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Summary

Chemical cues released from injured prey are thought to indicate the proximity of a preda-
tor or predation event, and therefore, an area of elevated predation risk. Prey often avoid
chemical cues released from injured heterospecifics, but there is little evidence to determine
whether this is due to homologous cues among phylogeneticallyrelated species, or avoidance
of injured syntopic species that experience predation from the same predators. The purpose
of this study was to examine the response of terrestrial red-backed salamanders (Plethodon
cinereus) to chemical cues from non-injured and injured members of their prey guild that vary
in their relatedness to P. cinereus. In the laboratory, P. cinereus avoided chemical cues from
injured conspecifics, injured and non-injured slimy salamanders (P. glutinosus), and injured
confamilial dusky salamanders (Desmognathus ochrophaeus). Red-backed salamanders did
not avoid rinses from non-injured conspecifics and dusky salamanders, or cues from injured
and non-injured earthworms (Lumbricus sp.), a more distantly related prey guild member.
These results cannot be fully explained by either phylogenetic relatedness (among plethod-
ontid salamanders) or prey guild membership alone. We suggest that a combination of these
factors, and perhaps others, likely influenced the evolution of heterospecific alarm cue avoid-
ance in the red-backed salamander.
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Introduction

Predation influences the ecology and evolution of nearly every organism, and
is important in regulating the size and species composition of natural com-
munities (Hairston et al., 1960; Paine, 1966; Sih et al., 1985; Lima & Dill,
1990; Lima, 1998). Prey can incorporate two general defense mechanisms in
the face of such widespread predation: predator avoidance, which reduces the
probability of encountering a predator, and antipredator behavior, which re-
duces the likelihood of successful predation after predator encounter (Brodie
et al., 1991). Predator avoidance mechanisms, such as avoidance of chemi-
cals signaling the proximity of a foraging predator, may be especially advan-
tageous since prey may eliminate or reduce predator encounters altogether
and hence the chance of injury or death (Edmunds, 1974; Endler, 1986; Sih,
1987; Lima & Dill, 1990).

Many species use chemical cues from predators or predation events to
reduce predation risk (reviewed by Weldon, 1990; Chivers & Smith, 1998;
Kats & Dill, 1998), because chemical cues can provide more benefits than
visual or acoustic cues in many predator-prey contexts due to their mode of
delivery, efficiency, and duration (Wilson, 1975; Bradbury & Vehrencamp,
1998). For instance, chemical cues can be detected in turbid aquatic envi-
ronments and around obstacles where visual cues would be less effective
(Smith, 1992; Dodson et al., 1994). Their efficiency may result from their
economic biosynthesis (e.g. the use of nitrogenous waste products as distur-
bance cues in Orconectes crayfish; Hazlett, 1990), or their effectiveness in
minute quantities (e.g. alarm cues released from 1 cm? of Pimephales prome-
las skin may generate an active space of 58,000 1; Lawrence & Smith, 1989).
Chemical cues also may persist in the environment longer than both acoustic
and visual cues, conveying information to prey species after the predator has
left the area, which may be especially beneficial if predators revisit the same
foraging areas.

Chemical substances released from damaged individuals may serve as
alarm cues and indicate high-risk areas where predation has recently oc-
curred. These cues have been studied in a variety of species dating back
to von Frisch’s discovery of the ostariophysan ‘Schreckstoff’ (as cited in
Smith, 1977). An interesting and complicating aspect of chemical alarm
cue detection involves risk assessment using damage-release chemical cues
deposited by injured heterospecific organisms because, unlike responses to
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conspecific alarm cues, responses to heterospecific alarm cues may be in-
fluenced by phylogenetic relatedness and ecological relatedness (Chivers et
al., 1997; Chivers & Mirza, 2001). The phylogenetic relatedness hypothesis
states that responses to heterospecific alarm chemicals are due to the ho-
mology of alarm cues among closely related species (e.g. the ostariophysan
fishes; Smith, 1992; Brown et al., 2000). The ecological relatedness hypoth-
esis suggests that species benefit from recognizing alarm cues from syntopic
members of the same prey guild that may or may not be closely related.
Because of the complexity of community interactions, it is likely that these
hypotheses work together to produce the broad chemical sensitivity seen in
many species (Kats & Dill, 1998), but there is little evidence to support this
claim.

The evolutionary and ecological roles of alarm chemicals among aquatic
vertebrates have been well studied (see reviews in Smith, 1992; Chivers &
Smith, 1998; Kats & Dill, 1998; Chivers & Mirza, 2001), but only recently
have these chemicals been established in terrestrial vertebrates, especially
among terrestrial amphibians (Lutterschmidt et al., 1994; Chivers et al.,
1996, 1997; Hucko & Cupp, 2001). Salamanders, in particular, are good
candidates for production of, and response to, alarm chemicals because they
have a highly glandular integument (Williams & Larsen, 1986; Jaeger &
Gabor, 1993; Simons et al., 1994; Hamning et al., 2000), use chemical cues
to mediate a wide variety of behavior (Madison, 1972, 1975, 1977; Dawley,
1984; Jaeger, 1986; Mathis, 1990), and release defensive secretions when
attacked (Arnold, 1982; pers. obs.)

The importance of chemical cues and plethodontid salamanders in the
community ecology of forests in the eastern United States has become
increasingly clear, especially in the context of predator-prey interactions
(Brodie, 1977, 1983; Brodie et al., 1979, 1991; Ducey & Brodie, 1983; Fen-
ster & Fenster, 1996). The red-backed salamander (Plethodon cinereus) may
have the most substantial influence on the community dynamics of eastern
woodlands because it is likely the most abundant vertebrate (in terms of bio-
mass) in eastern forests (Burton & Likens, 1975), and functions as predator
or prey to many species (Petranka, 1998; Maerz, 2000).

For these reasons, we examined how phylogenetic relatedness and known
competitive and predatory relationships between red-backed salamanders
and syntopic prey guild members influenced red-backed salamander re-
sponses to chemical cues from prey guild members. Adult red-backed sala-
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manders were exposed to rinses (non-injured) and tissue extracts from red-
backed salamanders (P. cinereus), Allegheny dusky salamanders (Desmog-
nathus ochrophaeus), slimy salamanders (P. glutinosus), and earthworms
(Lumbricus sp.) during their courtship season. Conspecifics represent com-
petitors and potential mates, but all conspecifics should have similar chemi-
cal alarm defenses, so we predicted that red-backed salamanders would avoid
extracts from macerated conspecifics but show no avoidance of, or even mild
attraction to, stimuli from non-injured individuals. We predicted that red-
backed salamanders would show either no response or mild avoidance of
non-injured dusky salamanders because dusky salamanders are similar-sized
competitors, ranging from 6-12 cm total length (Jaeger et al., 1998; Petranka,
1998). However, we expected red-backed salamanders to avoid macerated
dusky salamanders because they are preyed on by the same suite of preda-
tors. Unlike the dusky salamander, which is confamilial to red-backed sala-
manders, slimy salamanders are congeneric, and are therefore more likely
to release alarm cues homologous to those of red-backed salamanders. Fur-
thermore, the much larger slimy salamanders (11.5-20.5 cm total length) are
potential predators of red-backed salamanders (Powders, 1973; Powders &
Tietjen, 1974; Petranka, 1998). We therefore predicted that chemical cues
from both non-injured and macerated extracts of slimy salamanders would
be avoided. Lastly, we predicted that red-backed salamanders would be at-
tracted to non-injured earthworm cues because earthworms frequently in-
habit the same refuges as red-backed salamanders, and represent a potential
food source (Maerz, 2000). But, we hypothesized that red-backed salaman-
ders would avoid macerated earthworm because earthworm alarm cues (dis-
covered by Ressler et al., 1968) attract garter snakes (Thamnophis sirtalis)
(Halpern et al., 1986), a documented predator of red-backed salamanders
(Hamilton, 1951).

Methods
Collection and maintenance

In May 2001, we collected 280 adult red-backed salamanders from the Binghamton Univer-
sity Nature Preserve (BUNP), Broome County, New York for use in behavioral trials. Each
salamander was housed individually in 15 cm-diameter Petri dishes lined with moistened pa-
per towels and maintained at approximately 15°C and a 15L : 9D photoperiod. Test salaman-
ders were maintained in the laboratory for two days prior to the beginning of the experiment,
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and were not fed in captivity. Each salamander was tested once and released at the capture
site within one week of collection.

We also collected the following stimulus donor animals (equal numbers of males and
females for each salamander species) from BUNP: four additional red-backed, two slimy,
and four dusky salamanders, and four juvenile earthworms. Stimulus donor animals were
housed together by species in plastic shoeboxes (30 x 15 x 12.5 cm).

Experimental protocol

We examined the response of red-backed salamanders to eight different treatments made up
of both rinses and macerated extracts from the four donor species. Rinses from non-injured
donors were tested to control for cues that might elicit avoidance unrelated to damage-release
cues, such as territorial cues. These rinses were prepared by maintaining donor animals in
plastic shoeboxes with 250 ml distilled water for 48 h. After this period, organisms were
removed from their containers, quickly killed by decapitation, and the entire body was ho-
mogenized in a blender with 50.0 ml of distilled water per 1.0 g of tissue. We used whole
body macerates (instead of skin extracts used by Chivers et al., 1997) to more closely sim-
ulate a predation event where damage may occur to skin, muscle, efc. (Rohr & Madison,
2001; Rohr et al., 2002). Rinses and extracts were filtered with a porcelain Biichner funnel
to remove large particulate matter, were rapidly frozen in 50 ml conical-bottom plastic tubes
using liquid nitrogen, and were then stored in a freezer (—20°C) until use. All samples were
used within five days of preparation to minimize cue degradation.

We used previously established behavioral bioassay procedures to test for treatment re-
sponses (Madison et al., 1999a,b; Sullivan et al., 2002). In brief, we placed two filter paper
semicircles on opposite sides of 15 cm Petri dishes while maintaining a 3 mm gap between
each semicircle. We added 1.5 ml of treatment solution (macerate or rinse) or control water
to each semicircle using a 10 ml tuberculin syringe, and randomly distributed each treat-
ment dish on an 8 x 7 grid on the floor of our experimental room. Fifty-six different male and
female salamanders were tested each night over five consecutive nights. Treatments were ran-
domly stratified over the five nights so that seven replicates of each treatment were repeated
each night for a total of 35 replicates per treatment. We transferred each salamander from its
home dish to the assigned experimental dish with a cotton swab, and placed a 15 mm collar
of brown paper around the dish to visually isolate each salamander within test dishes during
the set-up period. After all salamanders were distributed (~15 min), the lights were turned
off and the trial was recorded for 60 min in complete darkness with a video camera sensitive
to infrared light. Conducting trials in total darkness forced salamanders to select substrates
using only non-visual cues and eliminated potential visual biases. We began recording trials
between 23.55 and 24.05 h each night.

We recorded the side occupied by each salamander every three minutes for one hour. If
a salamander straddled the 3-mm gap, the side with more than half of the individual was
considered the occupied side. We chose this criterion, instead of the location of the sensory
organs, because it is conceivable that an individual may ‘freeze’, an anti-predator response
shown by red-backed salamanders (Brodie et al., 1974; Madison et al., 1999a), when it detects
an alarm substance on one of the filter papers. In such a scenario, the sensory receptors of red-
backed salamanders may be over the alarm substrate and therefore may ‘show a preference’
for the alarm side, but the body of the individual is mostly on the control side, indicating a
more accurate negative response to the alarm substance. We added the number of times each
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salamander was located on the treatment substrate (macerated extract or non-injured rinse)
within the Petri dish for the 21 observations.

Red-backed salamanders tend to be relatively inactive and their response tends to be bi-
modally distributed as described in Madison et al. (1999a), precluding the use of parametric
analyses. We used a combination of Chi-square goodness-of-fit tests and binomial tests to de-
termine whether the number of salamanders that avoided the treatments differed significantly
from random expectation. We considered salamanders located on the treatment substrate <6
out of 21 observations as avoiding the treatment because this ratio is below an alpha value of
0.05 using a binomial test (Siegel & Castellan, 1998), and those located on the treatment side
>15 out of 21 observations as being attracted to the treatment. Individuals on the treatment
substrate for >6 and <15 observations were considered indifferent to the treatment, and were
excluded from the analysis. We used Chi-square goodness-of-fit tests to determine whether
the number of salamanders avoiding the treatment differed significantly from random expec-
tation.

Results

Only 24 of 280 (8.6%) red-backed salamanders were indifferent to treat-
ments based upon the criteria described above (Fig. 1a & 1b). Those red-
backed salamanders that appeared to make a choice did not significantly
avoid rinse from non-injured red-backed (x> = 0.71; p = 0.398) or dusky
salamanders (x> = 0.27; p = 0.602), but significantly avoided extract from
both species (x> = 8.76; p = 0.003, x> = 9.32; p = 0.002, respec-
tively; Fig. 1a & 1b). They also significantly avoided slimy salamander rinse
(x* = 4.83; p = 0.028) and extract (x> = 5.83; p = 0.016; Fig. 1c). Lastly,
red-backed salamanders did not significantly avoid the rinse ( x> = 0.03;
p = 0.857) or extract from earthworms (x> = 0.27; p = 0.602; Fig. 1d).

Discussion

Our study demonstrates that red-backed salamanders avoid chemical cues
from injured con- and heterospecific plethodontid salamanders, but not those
from a non-salamander member of the same prey guild. Because red-backed
salamanders did not avoid rinse from non-injured conspecifics or dusky sala-
manders, it is unlikely that the avoidance of macerated salamander extracts
is due to repulsive, non-damage-release pheromones or allomones, respec-
tively. Consequently, red-backed salamander avoidance of damage-release
chemicals from the various species of plethodontid salamanders in this study
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Fig. 1. Response score distribution for Plethodon cinereus exposed to non-injured rinses

and macerated extracts from (a) P. cinereus, PC, (b) Desmognathus ochrophaeus, DO, (c) P.

glutinosus, PG, and (d) Lumbricus sp., LS. Each point represents the number of observations

(0-21) that an individual was located on the treatment side (macerated extract or non-injured

rinse) of the experimental dish. An individual located on the stimulus side <6 times out of

a possible 21 observations significantly ‘avoided’ the treatment, and those located on the

stimulus side >15 times were significantly ‘attracted’ to the treatment. See text for statistical
analysis.

suggests an adaptive mechanism for evading areas of high potential predation
risk.

Whether the avoidance of macerated red-backed and dusky salamanders
by P. cinereus can be attributed to phylogenetic relatedness or membership
in the same prey guild is not certain, but both seem plausible. Support for
the phylogenetic relatedness hypothesis in salamanders comes from Lutter-
schmidt et al. (1994), who showed that D. ochrophaeus avoided chemical
alarm cues from D. ochrophaeus and D. brimleyorum despite allopatry. How-
ever, Hucko & Cupp (2001) showed that P. richmondi avoid crushed auto-
tomized tails from conspecifics, but not a sympatric congeneric salamander
(P. dorsalis). These data suggest that damage-release alarm chemicals are
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not conserved within Plethodontidae, and therefore phylogenetic relatedness
alone may not explain the results of this study.

There is also evidence that heterospecific alarm cue responses can evolve
when members of a prey guild learn to recognize alarm cues from syntopic,
but distantly related species (e.g. Mathis & Smith, 1993; Chivers et al., 1997;
Mirza & Chivers, 2001; Mirza et al., 2001). In our study, all salamander
species were confamilial (Plethodontidae) and syntopic, so we can not say
definitively that the P. cinereus alarm response to these different salamander
species is due to prey guild membership. However, our unpublished work ex-
amining predator diet effects on antipredator responses of red-backed sala-
manders suggests that the degree of habitat overlap among prey species is
correlated positively with the antipredator response of red-backed salaman-
ders to predators. For instance, P. cinereus avoided predators fed syntopic
prey species, but not those predators fed allotopic prey.

However, if ecological overlap alone was responsible for heterospecific
alarm cue recognition, then we would have expected P. cinereus to avoid
macerated earthworms, an ecologically related, but phylogenetically distant
species that shares the same microhabitats and predators (Hamilton, 1951;
Carpenter, 1952; Cunningham & Burghardt, 1999). The lack of macerated
earthworm avoidance by P. cinereus has two likely explanations. First, the
limited evolutionary history between P. cinereus and the recently invasive
Lumbricus sp. may preclude the recognition of cross-taxon alarm cues. Sec-
ond, it is possible that the rapid death of macerated earthworms prevented the
secretion of the earthworm alarm cues as demonstrated by Jiang ef al. (1989)
who used electric shock to induce secretion. A third, less likely hypothesis
suggests that the hunger state of individual salamanders compromised the
avoidance response to macerated earthworms (a potential food source). This
seems unlikely because in unpublished studies, we found no differences in
the predator avoidance behaviors of salamanders fed ad libitum, and those
intentionally starved for four weeks. We also would expect significant attrac-
tion to the earthworm rinse, since red-backed salamanders at our study site
often cohabit cover objects with, and frequently prey on earthworms (Maerz,
2000). Although the earthworm treatments do not clearly reveal which hy-
pothesis (ecological overlap or phylogenetic relatedness) is responsible for
the evolution of heterospecific alarm cue recognition, the lack of avoidance
of macerated Lumbricus sp. does demonstrate that the avoidance of macer-
ated salamander cues is not the avoidance of all damaged animal tissues.
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Red-backed salamander avoidance of non-injured and macerated slimy
salamander treatments is somewhat difficult to interpret. The avoidance of
the non-injured body rinse suggests a response to chemical cues from an in-
terspecific competitor or predator. Slimy salamander adults are larger than
adult red-backed salamanders (Petranka, 1998), and consume smaller sala-
manders including conspecifics (Powders, 1973; Powders & Tietjen, 1974).
Consequently, it seems plausible that slimy salamanders may be a predation
threat to red-backed salamanders, and thus avoidance of their rinse could be a
predator avoidance response. The avoidance of macerated slimy salamander
extract may be the avoidance of predator cues or chemical alarm cues.

This study shows that the avoidance of heterospecific alarm cues should
not be dichotomized into two mutually exclusive hypotheses. It seems more
likely that learned responses among members of a prey guild, phylogenetic
relatedness, and intraguild predation each play important roles in heterospe-
cific alarm responses. Future studies should examine salamander responses
to chemical alarm cues obtained from allopatric and sympatric prey guild
members. This approach would allow us to draw more definitive conclusions
regarding the importance of prey guild membership in cross-species alarm
responses and would help determine which factors may be the predominant
forces driving their evolution.
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