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Shifts in phenology are already resulting in disruptions to the 
timing of migration and breeding, and asynchronies between 
interacting species1–5. Recent syntheses have concluded that 
trophic level1, latitude6 and how phenological responses are 
measured7 are key to determining the strength of phenologi-
cal responses to climate change. However, researchers still 
lack a comprehensive framework that can predict responses 
to climate change globally and across diverse taxa. Here, we 
synthesize hundreds of published time series of animal phe-
nology from across the planet to show that temperature pri-
marily drives phenological responses at mid-latitudes, with 
precipitation becoming important at lower latitudes, prob-
ably reflecting factors that drive seasonality in each region. 
Phylogeny and body size are associated with the strength 
of phenological shifts, suggesting emerging asynchronies 
between interacting species that differ in body size, such 
as hosts and parasites and predators and prey. Finally, 
although there are many compelling biological explanations 
for spring phenological delays, some examples of delays are 
associated with short annual records that are prone to sam-
pling error. Our findings arm biologists with predictions con-
cerning which climatic variables and organismal traits drive 
phenological shifts.

Global climate change has important ecological consequences4,8 
and perhaps the best studied are advancements in the timing of sea-
sonal activities, or phenology, of organisms1–3,5,7,9–13. Understanding 
the factors that influence phenological shifts is critical because these 
shifts can impact the fitness of organisms by altering the availabil-
ity of resources2–4. In addition, phenological shifts can cause species 
declines by generating asynchronies or 'mismatches' between plants 
and pollinators12, plants and herbivores14, migrant birds and their 
prey11 or floral resources15, and hosts and parasites16. Several recent 
syntheses have made inroads to understanding how the phenology 
of species is shifting with climate change1,5–7,13. For example, pri-
mary consumers were demonstrated to be shifting their phenology 
faster than other species in the UK1, species are shifting their phe-
nology faster in spring than in autumn in China5, and the strength 
of phenological responses to climate change is dependent on the 
way responses are measured (for example, by the types of behaviour 
observed or the number of observations7).

Despite these insights, several critical knowledge gaps preclude 
accurate predictions of the sensitivity of organisms to climate 
change on a global level. First, although many phenological synthe-
ses assume climate change as an important driver, few explicitly test 
for the effects of climate (but there are exceptions1,5,6), and among 
those that do, climate data have rarely been standardized across 
studies to confirm the link between changes in phenology and cli-
mate. Therefore, it remains unclear which climatic variables, such 
as temperature or precipitation, are driving shifts in phenology, and 

whether the broad geographical heterogeneity in these climate vari-
ables impacts their power to explain and predict ecological trends. 
Second, recent syntheses have relied on country-level data, and no 
synthesis in over a decade has addressed phenological responses 
to climate change across the globe. Global analyses are important 
because they cover a greater extent of climatic conditions than local 
or regional analyses. For example, global syntheses are critical to 
test broad-scale latitudinal hypotheses about phenological shifts, 
such as the hypothesis that the climatic factors driving seasonal-
ity across latitudes also drive phenological changes. Third, it is 
unclear why some species show delayed spring phenologies despite 
an overall trend towards advancement10,17. Finally, it is also unclear 
whether certain ecologically important characteristics of organ-
isms are predictive of strong phenological responses. For example, 
phylogeny or body size may be an important factor in determining 
the magnitude of phenological response to climate change because 
smaller organisms acclimate more quickly to changing conditions 
than larger organisms (J.R.R., manuscript in preparation). In addi-
tion, ectotherms may exhibit stronger phenological responses than 
endotherms because they cannot thermoregulate independently of 
their environments and are therefore more sensitive to changes in 
environmental conditions. Because of these knowledge gaps, a gen-
eral global framework is still missing for predicting the direction 
and magnitude of phenological shifts based on ecological context 
and organismal traits.

To address these gaps, we conducted a global synthesis of animal 
phenological time series from 127 studies (Supplementary Tables 1 
and 2), spanning 5 continents and 15 classes of animals including 
insects, mammals, reptiles and birds. We focused on spring phe-
nological events in animals because phenological responses to cli-
mate change in plants have recently been synthesized18, some of our 
primary questions could only be answered using animal data, and 
the evidence for advancement in animal phenology is more con-
flicting and controversial than it is for plants9 (see Supplementary 
Information). Here, we synthesized the multivariate effects of cli-
mate change on phenology, as well as testing predictors of this com-
plex phenomenon (such as latitude, endo- or ectothermy), with a 
unique meta-analysis approach that jointly modelled phenological 
shifts, the effects of climate on phenology and climate change (the 
50 yr correlation between climate and year) using a trivariate mixed-
effects model19,20 (see Supplementary Fig. 1; see Methods). Unlike 
previous univariate meta-analyses that strictly synthesize pheno-
logical shifts2,3, our trivariate approach assessed whether phenology 
is dependent on climate and climate change and whether the magni-
tude and direction of these relationships is dependent on 10 climate 
variables (for example, mean, minimum and maximum tempera-
ture, precipitation, snowfall21, see Methods). All climate variables 
were standardized across all time series by accessing a single source 
of historical point-based climate data (the National Oceanic and 
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Atmospheric Administration (NOAA) NCDC-3 data22) with data 
that were specific to the region and time of each study, reliably 
allowing us to identify which aspects of climate were driving phe-
nological shifts. Importantly, this approach facilitated evaluation of 
whether climate change, rather than just long-term climate means, 
was associated with changes in phenology. Further, our trivariate 
mixed-effects meta-analysis also accounted for dependencies of 
effects among related taxa due to their shared phylogenetic history23 
(see Supplementary Code). We were able to compare relationships 
between phenology and year for 1,011 time series and relationships 
among phenology, year and climate for a subset of these including 
321 time series.

The meta-analysis revealed that, on average, animals have 
advanced their phenology significantly since 1950 ( ̄β   = −0.318 
(mean slope), d.f. =  937, P =  0.01; Fig. 1a; Supplementary Table 3),  
advancing by 2.88 days per decade. Across all species and sites, mean 
temperature increased significantly over time (Fig. 1a; Supplementary 
Table 4). The meta-analysis also revealed that temperature is closely 
related to phenological date independent of year, and that phenol-
ogy is more closely linked with mean temperature in areas that have 
experienced more climate change (Fig. 1b), suggesting that climate 
change is indeed the driver of these shifts (Fig. 1a; Supplementary 
Table 4). Phenological shifts were not heavily biased by the  

phylogenetic history of taxa, which accounted for only about 4.5% 
of the variance (phylogenetic τ2) between phenology and year, and 
0–6% between phenology and climate (Supplementary Tables 3–8).  
Between-study variance accounted for 8–9% of the total variance 
accounted for in all models (Supplementary Tables 3–8).

The direction of phenological shifts may differ among taxa, 
with some species showing delays rather than advances of spring  
phenology5,10,13,17,18—such as delays in seabird egg-laying as a con-
sequence of reduced sea ice10 or delays in phenology (flowering, for 
example) after short winters that fail to induce vernalization17. To test 
whether a phenomenon similar to vernalization might be respon-
sible for phenological delays among animals (positive relation-
ships between phenological date and year), we examined whether 
the magnitude of the delay could be predicted by the increase in 
winter temperatures (defined here as the relationship between 
year and average temperature during the year’s three coolest con-
secutive months), controlling for latitude. We found no support 
for the hypothesis that winter temperatures predicted phenological 
delays, instead finding that they predicted advancements (β =  − 
0.296 (slope), d.f. =  321, P <  0.001 in models with all time series) 
or were not significantly predictive (β =  − 0.125, d.f. =  68, P =  0.32 
among time series with delays only). In fact, winter temperatures 
were positively correlated with spring temperatures that are well 

0.5
a b

d e

c

f

1.4

1.4

1.2

1.2

0.1

0.0

–0.1

–0.2

–0.3

–0.4

–0.5

0.1

0.0

–0.1

–0.2

–0.3

–0.4

–0.5
–2.5

–0.6
0 20 40 60 80 100

Absolute value of latitude

A
bs

ol
ut

e 
va

lu
e 

of
 s

lo
pe

be
tw

ee
n 

cl
im

at
e 

an
d 

ye
ar

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

–2.5
0

S
ta

nd
ar

di
ze

d 
co

rr
el

at
io

n 
be

tw
ee

n
ph

en
ol

og
y 

an
d 

tim
e 

A
bs

ol
ut

e 
va

lu
e 

of
 s

lo
pe

be
tw

ee
n 

cl
im

at
e 

an
d 

ye
ar

S
ta

nd
ar

di
ze

d 
co

rr
el

at
io

n 
be

tw
ee

n
ph

en
ol

og
y 

an
d 

cl
im

at
e

10 20 30
Sample size

Climate

Year Phenological shifts

Behavioural response

Phenology

Clim
at

e 
ch

an
ge

40 50 60
1.0

0.8

1.0

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

0.0

log10 (Mass)

10.07.55.02.5

0.4

0.3

0.2

0.1

S
lo

pe 0.0

–0.1

–0.2

–0.3

–0.4

–0.5
Phenology
versus time

Phenology
versus

temperature
Absolute value of slope between

climate and phenology

Temperature
versus time

Fig. 1 | improving how we understand advancements in phenology due to climate change. a, Across 1,011 time series, phenology occurred earlier through 
time as temperature increased and the increases in temperature were negatively correlated with phenology (see Supplementary Fig. 3 for precipitation). 
Error bars represent s.e.m. b, Phenology was more closely linked with mean temperature (x axis) in areas with more climate change (y axis; R2 =  0.152, 
d.f. =  175, P <  0.0001). c, A funnel plot comparing sample sizes (total years in time series) with standardized effect sizes (correlation between phenology 
and time quantified via Fisher′ s z effect sizes (standard score)) reveals that studies with small samples sizes have large variation with both the positive 
and negative shifts, suggesting that species that appear to delay their phenology in spring might sometimes be spurious products of sampling error. 
The solid line is the zero line and the dotted line represents the grand mean effect size (− 0.349). d, Precipitation becomes more important in driving 
phenological responses (that is, more negative values) as one moves towards the Equator from temperate regions (orange line with 95% confidence 
band), whereas temperature becomes important as one moves away from the Equator towards temperate regions (blue line with 95% confidence band; 
test for different slopes: P <  0.0001). Data on time series of phenological shifts close to the equator are unfortunately unavailable. e, The slope between 
log-transformed body mass and the correlation between phenological date and mean temperature is positive in a non-phylogenetically controlled trivariate 
meta-analysis model, suggesting that smaller organisms might track their phenology with temperature more closely than larger organisms. Data points 
are not shown to reduce clutter and 95% confidence intervals are provided in grey. f, Conceptual figure explaining the meaning of the slope and correlation 
terms on the other panels, which represent relationships betwen year, climate and phenology.
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documented as drivers of phenological advancements (β =  0.298, 
d.f. =  321, P <  0.0001 for all time series, β =  0.202, d.f. =  68, P =  0.03 
among delays). Alternatively, many apparent spring delays might 
be sampling artifacts of short annual records. Indeed, a funnel plot 
revealed that many studies based on short time series (small sam-
ple sizes) had both delays and strong advances in phenology, but 
when sample sizes were large, phenology advanced more uniformly 
(Flinger–Killeen test for homoscedasticity: χ2 =  112.72, P <  0.0001; 
Fig. 1c; see Extended Data Fig. 2 for comparisons of effect sizes 
with variance). In addition, there was no evidence of funnel plot 
asymmetry (Egger’s test: z =  − 0.724, P =  0.47), suggesting that the 
representation of phenological delays in our dataset does not differ 
from what would be expected by chance. While this result does not 
exclude true and biologically relevant spring delays in phenology 
(see examples above), it suggests that reports of delays are probably 
sensitive to sampling error; in fact, the duration of time series has 
previously been found to influence observed phenological trends in 
marine species7.

We also hypothesized that phenological shifts would be associ-
ated with the climatic variables that drive seasonality locally—such 
as temperature at mid-latitudes (that is, temperate zones) and pre-
cipitation at low latitudes (that is, tropical and subtropical zones). 
Moreover, because climate change is resulting in greater changes 
in temperature than precipitation24, we hypothesized greater 
phenological shifts in temperate than tropical zones. In support 
of these hypotheses, as the absolute value of latitude increased, 
changes to temperature became more predictive of the magnitude 
of phenological shifts, and as latitude decreased, precipitation 
became a more important predictor of phenology (test for differ-
ent slopes25: t =  7.89, d.f .=  1650, P <  0.0001; Fig. 1d; Supplementary 
Table 5). Further, there was a greater increase in temperature than  

precipitation through time (Extended Data Fig. 3), and the correla-
tion between phenology and temperature in the temperate zones 
was stronger than the correlation between phenology and precipita-
tion near the tropics (Fig. 1d). These results indicate that different 
climatic variables are triggering phenology in temperate and tropi-
cal regions. While past syntheses have hypothesized that species 
should shift their phenology faster at higher latitudes in response to 
greater warming in these regions2,3,6, low-latitude species may also 
be shifting their phenology in response to changes in rainfall. Given 
that the majority of phenological studies are from northern tem-
perate climates7 (especially North America and Europe; Fig. 2), and 
emphasize temperature over precipitation, additional phenological 
time series from low latitudes are needed to quantify the full effects 
of precipitation shifts on tropical phenology. However, the effects of 
precipitation on phenology may be less closely associated with lati-
tude than the effects of temperature simply because latitude is more 
strongly correlated with temperature than precipitation.

Given that temperature and precipitation drive phenology 
unequally across the globe and particular taxa exhibit differential sen-
sitivities to extreme temperatures and moisture levels, we hypothe-
sized that the phenology of specific taxonomic groups might be more 
strongly associated with temperature or precipitation. For example, 
we expected amphibians to respond to precipitation more strongly 
than any other taxonomic group because of their considerable reli-
ance on moist conditions for survival and reproduction. However, 
across all taxa synthesized, phenology was associated more strongly 
with temperature than with precipitation (temperature, ̄β  =  − 0.310, 
d.f. =  1579, P =  0.02; precipitation, ̄β  =  − 0.054, d.f.=  1579, P =  0.54; 
Extended Data Fig. 4; Supplementary Table 4), and different com-
ponents of temperature (mean, minimum and maximum) did not 
significantly differ from one another at predicting phenology. As 

Equator

Fig. 2 | the uneven global distribution of published studies exploring the phenology of animals. There are hundreds of published phenological time 
series from North America and Europe, but much less is known about phenology on the other five continents with particularly large gaps in the tropics 
and marine systems. Red points indicate advancements in phenology over time and blue points indicate delays. The strength of the color indicates the 
magnitude of the relationship between phenology and time (as quantified with a Fisher′ s z effect size).
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predicted, amphibians exhibited the strongest association between 
precipitation and phenology among all taxa ( ̄β  =  − 0.172, d.f. =  1564, 
P =  0.16; Extended Data Fig. 4b; Supplementary Table 6). Although 
Thackery et al. found that amphibian phenology was not sensitive to 
precipitation in the UK1, this might only be the case at high latitudes 
where the effects of precipitation are less pronounced.

Next, we sought to identify general ecologically important char-
acteristics of taxa that might predict the strength of phenological 
responses to climate change. Here, we hypothesized that ectotherms 
and smaller organisms should be more sensitive to shifts in climate 
than endotherms and larger organisms (because thermal inertia is 
positively associated with body size26; J.R.R., manuscript in prepa-
ration). When we tested for the effects of body size in a phyloge-
netically controlled model, there was no significant effect of body 
size, at least partly because body size is correlated with phylogeny 
(for example, almost all birds have greater mass than all insects). 
However, smaller invertebrate groups advanced their phenology 
faster than larger vertebrates (Fig. 3a; Supplementary Table 7);  
non-insect invertebrates (mean body mass: 5.3 ×  10−6g) advanced 
their phenology 4.93 days per decade, insects (0.15 g) advanced 
4.15 days per decade, amphibians (34 g) advanced 3.23 days per  
decade and birds (352 g) advanced 2.24 days per decade. In addition, 
body size was a significant predictor of phenological shifts in a model 
without phylogenetic controls (β =  0.0544, d.f. =  921, P <  0.01),  
suggesting that it may be a factor influencing the strength of phe-
nological shifts. As predicted, the phenology of ectotherms was 
more strongly correlated with temperature than the phenology of  
endotherms (Fig. 3b; Supplementary Table 7), even when controlling 
for phylogeny. Finally, herbivore phenology tracked temperature  

more closely than carnivore phenology (Fig. 3c; Supplementary 
Table 7), possibly because herbivores are also responding to shifts 
in the timing of plant phenology27, and supporting similar con-
clusions by Thackeray et al. in the UK1. Additionally, we did not 
observe a difference between the phenological responses of terres-
trial and aquatic species (Fig. 3d; Supplementary Table 7), although 
there are admittedly few aquatic species in the dataset (18 total) 
and all are marine.

Finally, we posited that the type of phenological responses, such 
as peak seasonal abundance, arrival (migration) and breeding/
rearing (calling, nesting, laying, hatching or weaning), may differ 
in their sensitivities to climate change, as recently concluded by a 
synthesis on marine systems7. We predicted that arrival would be 
least correlated with climatic factors because migrants are prob-
ably reacting to climatic conditions where they left from rather 
than conditions where they are arriving28. Phenological responses 
related to arrival tracked climate the most poorly (Extended Data 
Fig. 5; Supplementary Table 8), and those based on peak abun-
dance tracked temperature changes the most closely—possibly 
because peak abundance is more often documented with smaller 
invertebrates that phenologically respond strongly to climate. 
Unfortunately, because there are very few phenological time series 
from equatorial regions, and arriving species often come from mul-
tiple departure locations, we could not test whether the timing of 
departures for spring migrations tracked temperature better than 
arrivals (but see ref. 29).

Our findings add to the growing evidence of direct ecological 
consequences of climate change on ecological systems and pro-
vide strong evidence linking climate change to phenological shifts. 
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Our synthesis unveiled previously unidentified generality in the 
phenological responses of organisms to climate, indicating that 
the phenology of species at high latitudes most strongly responds 
to temperature, while species at lower latitudes are responding to 
temperature and precipitation equally; thus, different components 
of climate drive phenology in different regions of the globe. We also 
found that different taxa respond to the same climatic signals but 
do so at different rates, and that the strength of these phenologi-
cal shifts may be predictable based on two easily measured traits: 
thermoregulation and body size. As climate change intensifies in 
the next century, our results suggest that advances in phenology are 
likely to become more exaggerated, potentially further desynchro-
nizing interactions between species that vary considerably in their 
body sizes, such as mutualistic, predator–prey, and host–parasite 
interactions. However, the synthesis presented here now equip cli-
mate biologists with knowledge regarding the specific components 
of climate and the traits of interacting species that can drive pheno-
logical shifts, providing new opportunities to forecast mismatches 
and mitigate their adverse effects.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41558-018-0067-3.
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Methods
Literature survey and data requirements. We conducted a literature search in 
September 2012 on Web of Science for the term ‘phenology AND climate’ within 
the following fields: environmental sciences and ecology, zoology, developmental 
biology, reproductive biology, life sciences (other), entomology, behavioural 
sciences, physiology, biodiversity and conservation, fisheries, evolutionary biology, 
parasitology, marine and freshwater biology, infectious diseases and oceanography. 
This search generated 6,989 studies that were examined for phenological time 
series. References in these papers and the USA National Phenology Network 
(https://usanpn.org) database were also examined for time series. Time series were 
not used if they: (1) contained data spanning < 10 yr; (2) contained data for fewer 
than seven individual years; (3) described autumn migrations; or (4) described data 
that were redundant with data we had already compiled from another paper. We 
also eliminated raw data from before 1950, because this is considered to be before 
significant global climate change30. Our exclusion criteria are similar to those from 
previous meta-analyses1,2.

Data extractions. We extracted raw time series data from figures plotting day of 
year of phenological event (including date of first or median arrival, first calling, 
nesting, laying, peak abundance, oestrus, or weaning) against year using Datathief 
III Version 1.6 (Bas Tummers). Correlation coefficients between phenological 
date and year, standard errors or surrogates, and slopes were also calculated for 
each time series when they were not reported in the original text (all analyses were 
conducted in R 3.1.0; stats package, glm function). Correlation coefficients (r) and 
standard deviations were available for 1,011 of these time series (representing 127 
studies) that were used in the meta-analysis examining the relationship between 
phenology and year. Approximately 400 time series from about 100 papers 
provided raw data and were used in the meta-analyses examining the relationships 
between phenology, year and climate (the actual numbers varied between different 
climate variables because some variables were not available at certain geographic 
locations). Sampling variances (used as weights) were derived from all correlation 
coefficients, and coefficients and variances were standardized using Fisher’s  
z-transformation before all meta-analysis modelling.

External climate data. Climate data were obtained from the NOAA National 
Climatic Data Center (NCDC; www.ncdc.noaa.gov) worldwide database  
of monthly observational data corresponding to the nearest location  
(within 100 km) and all years in every time series that provided raw data  
and geographic coordinates. Ten climate variables were obtained for each  
site and year (see Extended Data Fig. 4) and they generally were related to 
temperature or precipitation. Climate variables were used individually in models 
instead of as covariates (see below). Yearly averages of climate variables were 
compiled for all variables in all locations and for the years in all time series only 
when data were available for all 12 months. Within each time series, correlation 
coefficients and standard errors were compiled for all correlations between all 
annual climate variables year, all climate variables and phenology, and phenology 
and year (stats package, glm function). We did not have any climate data for 
marine species and did not include these time series in any analyses testing the 
effects of climate.

Independent fixed-effects variables. Independent variables collected for each 
time series included taxonomic classification of the focal species, absolute value 
of latitude, elevation, form of thermoregulation (ectothermy or endothermy), 
trophic level, habitat (terrestrial or marine), country (to control for geography), 
log-transformed body mass (see below) and type of phenological event (endpoint 
measured). Taxonomic classification was assessed to the class level. Elevation 
specific to the locations where time series were observed was extracted from 
Worldclim elevation rasters (www.worldclim.org) (raster package, extract 
function). Trophic levels were assigned categorically as ‘herbivore’, ‘omnivore’, 
or ‘carnivore. If a species typically eats plants and animals it was designated an 
omnivore, but if it mostly relies on either prey or plants and only occasionally ate 
the other, it was assigned to ‘carnivore’ or ‘herbivore’ respectively. Phenological 
events were categorized as either ‘arrival’ (migrations), ‘breeding/rearing’ 
(calling, nesting, laying, hatching, or weaning) or ‘peak abundance’ (peak 
population abundance).

Meta-analysis models. A trivariate mixed-effects meta-analysis was used  
to analyse three effect sizes per study that jointly quantify the pairwise relationships 
among phenology, time and a single climate variable (Fig. 1f). Preserving 
the trivariate structure of effect sizes has the advantage of accounting for the 
correlations within the three non-independent effect sizes (because of sampling 
variability and covariances), while also explicitly accounting for any existing 
correlations among these three effect size groups (via a multivariate random-effects 
model). Our overall model had a hierarchical structure in which we modelled the 
sampling variances and covariances among the three effect sizes (within-study 
weighting to account for study sampling error), between-study random-effects 
for each effect size triplicate that were allowed to be correlated but differ among 
groups (that is, a multivariate version of the between-study variance component 
typically included in traditional random-effects meta-analysis) and finally an 

unstructured random-effect modeling the phylogenetic correlations among taxa 
(see Supplementary Code). For all models, the rma.mv function from the  
R package metafor31 was used, with the variance–covariance matrix as the 
variance–covariance matrix of the sampling errors, and all random effects 
(trivariate between-study variances, and phylogenetic) were based on restricted 
maximum likelihood estimator using a nlminb numerical optimizer. However, 
we did not include phylogenetic random-effects in our initial analysis of the 
relationship between phenology and body size because phylogeny and body size 
are highly correlated and thus controlling for phylogeny also indirectly eliminates 
much of the body size variation. See Supplementary Code for the R script used in 
these analyses.

Species-level body mass data. We collected species-level body masses from 
several existing datasets and sources32–40. We calculated mass based on body 
length for some insects as described by previous studies41,42, when we could 
not find published estimates of body mass. For species for which we could not 
obtain or calculate reliable body mass data (including several amphibian and 
invertebrate species), we estimated mass by taking the mean of the mass of species 
in the lowest taxonomic level occupied by that species. Although this method is 
relatively coarse, we were not concerned about obtaining highly specific values of 
mass because across the organisms in our dataset mass varied by > 10 orders of 
magnitude and mass was log-transformed in our analyses. To plot the  
relationship between body mass and phenology, we used the ggplot2 package43, 
ggplot function.

Trivariate mixed-effects meta-regression model. In matrix notation, our 
trivariate and phylogenetic mixed-effects meta-analysis can be described with this 
regression model:

β σ= + ε + +z MW Mu PJ, (1)P
2

where z denotes a (k ×  1) column vector containing all of the k number  
of effect sizes. For each ith of m number of studies there can be three  
effect sizes (specifically Fisher’s Z transformed correlation coefficients): 
the standardized correlation (Zt,p) between time (t) and phenology (p), the 
correlation (Zt,c) between time and the climate variable (c) and the correlation 
between phenology and the climate variable (Zp,c). Therefore z can have  
length k =  m ×  3. However, for some climate variables, data were incomplete  
such that Zt,c and Zp,c could not be calculated. The indicator matrix M models  
this availability of effect sizes among studies. It has a block diagonal design with 
its main diagonal defined by Ii; a vector whose ith elements are either a 3 ×  3 
identity matrix when the three effect sizes are available or a 1 ×  1 identity 
 matrix when otherwise (for example, designating studies with only δt,p available). 
The second matrix in equation (1) (W) is the regression design matrix of m× 
(p +  1) size, with p number of covariates, and where the first column of W 
contains only ones (for example, the model intercept). The regression coefficient 
of this model is defined by β which is a column vector of size (p +  1) ×  3.  
Because covariates (predictors) are included in our model and are treated  
as fixed effects, our meta-analysis model can also be described as a trivariate 
mixed-effects meta-regression.

The within-study sampling error and sampling covariances (further  
defined below in the Within study sampling error of trivariate effect sizes section) 
among the effect sizes is modelled as a block diagonal matrix ε, which on its main 
diagonal contains the elements of an m ×  1 column vector of sampling variance–
covariance matrices. The ε matrix models the weighting of effect sizes based on 
their sampling error, and models the non-independence of the trivariate effects 
that share common dependent variables. Also, as assumed by all random-effects 
meta-analysis, a between-study variance τ2 component is estimated; however, here 
our among-study variance component (as well as covariance) is estimated for each 
of the three main underlying effects. For simplicity, it is assumed that the main 
effects have the following multivariate normal (MVN) between-study random-
effects distribution:
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Where u is a 3× 3 variance–covariance matrix defining the trivariate 
between-study variance. Multivariate among-study variance components are 
estimated via maximum likelihood using the ram.mv function in the metafor 
R package. In addition to the multivariate among-study random affects, the 
phylogenetic effects are modelled as random factor with an unstructured 
multivariate distribution σ PJP

2 . Here σP
2 is the estimated phylogenetic variance, 

and following ref. 44, J is a secondary indicator matrix that links the phylogenetic 
correlations (P) to individual effect sizes and when multiple effect sizes are 
derived from single species it specifies their shared covariance to one. Finally, P 
is the phylogenetic correlation matrix; details about P are described below under 
the Non-independence due to shared evolutionary history among taxa section. 
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Marginally, this trivariate and phylogenetic mixed-effects meta-regression model 
can be described as:

β ε σ~ + +z VN u PJMWM ( , M )i P
2

Within-study sampling error of trivariate effect sizes. We accounted for the 
non-independence that occurs when combining and comparing multiple effect 
sizes that share common variables (phenology, climate and year) by including their 
estimated sampling covariances in the off-diagonals of the variance–covariance  
ε matrix used as weights for meta-analysis (as done in a previous study19).  
This ε matrix has a block-diagonal design, where each block can represent a  
1 ×  1 matrix containing the sampling variance of an effect size (cases where only Zt,p  
was available for a study), or a 3 ×  3 matrix where its main diagonal contains  
the sampling variances (var) of each of three Fisher′ s Z transformed correlation 
(effect size):

= = =
−







Z Z Z

n
var var( ) var( ) 1

3
, (3)t p t c p c, , ,

where each variance is the predicted sampling variance of the pairwise Fisher’s 
Z transformed correlation for three variables (t, p and c). All correlations share 
a common sample size (n). The covariance between two Z correlations, for 
example Zt,p and Zt,c, is cov(Zt,p, Zt,c), where Zt,p is the effect size for a correlation 
between variables time and phenology, and Zt,c is the effect size for the correlation 
between time and climate. Further, the raw correlations (Pearson product moment 
correlation coefficient) are needed to estimate these covariances, where for example 
between t and p the correlation will be ρt,p. Following two previous studies45,46, the 
covariance between two Fisher’s Z effect sizes with a t common dependent variable, 
cov(Zt,p, Zt,c), is estimated as:

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ
=

− − + . × × × − . × − +

− − −

Z Z

n

cov( , )

(1 0 5 ) 0 5( ) (1 )

( 3) (1 (1 ))

(4)
t p t c

pc t p t c t p t c p c t p t c t p t c

t p t c

( , ) ( , )

,
2

,
2

, , , , , ,
2

,
2

,
2

,
2

The covariance was estimated for all pairwise correlations among the 
phenology, time and climate variables. For example, the variance–covariance 
matrix for ith of the effect size triplicates can be described with this symmetric 
matrix:
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The matrices for each ith study were then stacked diagonally into a  
single matrix for meta-analysis (ε). When needed, individual matrices  
described in equation (5) that were not positive definite were fixed following  
an earlier work47.

Testing for impacts of shorter winters on spring phenological delays. We 
examined whether the magnitude of a phenological delay could be positively 
predicted by an increase in winter temperatures (defined as the relationship 
between year and average temperature during the year′ s three coolest 
consecutive months), controlling for latitude (glm function, stats package). We 
tested this using the full dataset and a subset containing only time series with 
delayed phenology (positive relationships between phenology and year). We 
also tested whether winter warming correlated with spring warming (change 
in average temperature in three months following ‘winter’ over time), also 
controlling for latitude.

Funnel plot statistics. To evaluate our funnel plot (Fig. 1b) for asymmetry in 
effect sizes (slopes of phenology versus year), we conducted an Egger’s regression 
test for funnel plot asymmetry (regtest function, metafor package). To test whether 
the variance in effect sizes decreased with increasing sample size, we conducted a 
Fligner–Killeen test of homogeneity of variances (fligner.test function,  
stats package).

Non-independence due to shared evolutionary history among taxa. To account 
for the correlational structures among taxa due to their shared evolutionary 
history23, we treated the phylogenetic correlations (P) derived from a composite 
phylogenetic tree of all taxa in our study (see equation (1)) as an unstructured 
random-effect in our trivariate meta-regressions. These phylogenetic correlations in 
P were extracted from an ultrametric tree using the vcv function of the ape package 
in R48, and explicitly assume trait evolution via Brownian motion49. Our composite 
phylogeny of all 475 species used the topology and internode divergence times 
from published sources when available. The deep divergence times among phyla 

were based on ref. 50. Among vertebrates, the topology and estimated divergence 
times among fish were compiled from ref. 51, mammals from ref. 52, and amphibians 
from refs 53,54. The topology and divergence times among birds were derived from 
a random sample of the Bayesian tree pool provided by the online avian phylogeny 
generating tool55. Among invertebrates, the topology and divergence times among 
hexapods, calanoids and branchiopods were based two previous studied56,57.  
The topology and divergence times among insect orders were compiled using 
an earlier work58. However, within insect orders topologies were only available 
for moths and butterflies57,59,60, and dragonflies and damselflies61. Because the 
divergence times within Lepidoptera and Odonata were unavailable, we arbitrarily 
scaled branch-lengths distances using a published method49 while assuming ρ  
to the power of 1.0 to create divergence times fitting a Brownian motion  
model of evolution.

Code availability. The code used to generate trivariate model results is available as 
Supplementary Code.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon request.

References
 30. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, 

Pachauri, R. K. & Meyer L. A.) (Cambridge Univ. Press, 2015).
 31. Viechtbauer, W. Conducting meta-analyses in R with the metafor package.  

J. Stat. Softw. 36, 1–48 (2010).
 32. Dunning, J. B. Jr CRC Handbook of Avian Body Masses (CRC, Boca Raton, 

Florida, 1992).
 33. Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature 

dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 
108, 10591–10596 (2011).

 34. Garcia-Barros, E. Body size, egg size, and their interspecific relationships with 
ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, 
Hesperioidea). Biol. J. Linn. Soc. 70, 251–284 (2000).

 35. Karlsson, B. Resource allocation and mating systems in butterflies. Evolution 
49, 955–961 (1995).

 36. Trochet, A. et al. A database of life-history traits of European amphibians. 
Biodivers. Data J. 2, e4123 (2014).

 37. Brose, U. Body sizes of consumers and their resources: Ecological archives 
E086-135. Ecology 86, 2545–2545 (2005).

 38. Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, 
and geography of extant and recently extinct mammals: Ecological Archives 
E090-184. Ecology 90, 2648–2648 (2009).

 39. Myers, P. et al. The Animal Diversity Web (2016); http://animaldiversity.org
 40. Williams, R. N. & MacGowan, B. J. in Proc. Indiana Acad. Sci. (eds Hay, O. P. 

et al.) 147–150 (1891).
 41. Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the 

nutrient supply network model. Funct. Ecol. 21, 282–290 (2007).
 42. Hódar, J. The use of regression equations for the estimation of prey length 

and biomass in diet studies of insectivore vertebrates. Miscell. Zool. 20,  
1–10 (1997).

 43. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer,  
New York, 2009).

 44. Viechtbauer, W. Conducting meta-analyses in with the metafor package.  
J. Statistical Softw. 36, 3 (2010).

 45. Olkin, I. & Finn, J. D. Correlations redux. Psychol. Bull. 118,  
155–164 (1995).

 46. Becker, B. J. in Handbook of Applied Multivariate Statistics and Mathematical 
Modeling (eds Tinsley, H. & Brown, S.) 499–526 (Academic, Cambridge,  
MA, 2000).

 47. Higham, N. J. Computing the nearest correlation matrix—A problem from 
finance. IMA J. Numer. Anal. 22, 329–343 (2002).

 48. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and 
evolution in R language. Bioinformatics 20, 289–290 (2004).

 49. Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. B 326,  
119–157 (1989).

 50. Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge- 
base of divergence times among organisms. Bioinformatics 22,  
2971–2972 (2006).

 51. Betancur-R, R. et al. The tree of life and a new classification of bony fishes. 
PLOS Current. Tree Life https://doi.org/10.1371/currents.tol.53ba26640df0ccae
e75bb165c8c26288 (2013).

 52. Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and 
KPg extinction on mammal diversification. Science 334,  
521–524 (2011).

 53. Shaffer, H. B. & McKnight, M. L. The polytypic species revisited: Genetic 
differentiation and molecular phylogenetics of the tiger salamander 
Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 50,  
417–433 (1996).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NAtuRe CLiMAte ChANge | www.nature.com/natureclimatechange

http://animaldiversity.org
https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
http://www.nature.com/natureclimatechange


LettersNatuRe Climate CHaNge

 54. Moriarty, E. C. & Cannatella, D. C. Phylogenetic relationships of the North 
American chorus frogs (Pseudacris: Hylidae). Mol. Phylogenet Evol. 30, 
409–420 (2004).

 55. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global 
diversity of birds in space and time. Nature 491, 444–448 (2012).

 56. Podar, M., Haddock, S. H. D., Sogin, M. L. & Harbison, G. R. A molecular 
phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. 
Mol. Phylogenet Evol. 21, 218–230 (2001).

 57. Regier, J. C. et al. A large-scale, higher-level, molecular phylogenetic study of the 
insect order Lepidoptera (moths and butterflies). PLoS ONE 8, e58568 (2013).

 58. Trautwein, M. D., Wiegmann, B. M., Beutel, R., Kjer, K. M. & Yeates, D. K. 
Advances in insect phylogeny at the dawn of the postgenomic era. Annu. Rev. 
Entomol. 57, 449–44 (2012).

 59. Wahlberg, N. et al. Synergistic effects of combining morphological and 
molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. 
Soc. B 272, 1577–1586 (2005).

 60. Freitas, A. V. L. & Brown, K. S. Phylogeny of the Nymphalidae (Lepidoptera). 
Syst. Biol. 53, 363–383 (2004).

 61. Dumont, H. J., Vierstraete, A. & Vanfleteren, J. R. A molecular phylogeny of 
the Odonata (Insecta). Syst. Entomol. 35, 6–18 (2010).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NAtuRe CLiMAte ChANge | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange



