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A wide range of research has promised new tools for forecast-
ing infectious disease dynamics, but little of that research is
currently being applied in practice, because tools do not address
key public health needs, do not produce probabilistic forecasts,
have not been evaluated on external data, or do not provide
sufficient forecast skill to be useful. We developed an open
collaborative forecasting challenge to assess probabilistic fore-
casts for seasonal epidemics of dengue, a major global public
health problem. Sixteen teams used a variety of methods and
data to generate forecasts for 3 epidemiological targets (peak
incidence, the week of the peak, and total incidence) over 8
dengue seasons in Iquitos, Peru and San Juan, Puerto Rico.
Forecast skill was highly variable across teams and targets. While
numerous forecasts showed high skill for midseason situational
awareness, early season skill was low, and skill was generally
lowest for high incidence seasons, those for which forecasts
would be most valuable. A comparison of modeling approaches
revealed that average forecast skill was lower for models
including biologically meaningful data and mechanisms and that
both multimodel and multiteam ensemble forecasts consistently
outperformed individual model forecasts. Leveraging these
insights, data, and the forecasting framework will be critical to
improve forecast skill and the application of forecasts in real
time for epidemic preparedness and response. Moreover, key
components of this project—integration with public health
needs, a common forecasting framework, shared and standard-
ized data, and open participation—can help advance infectious
disease forecasting beyond dengue.
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Infectious diseases pose a continuing and dynamic threat globally.
The mosquito-transmitted dengue viruses, for example, are

endemic throughout the tropical regions of the world and infect
millions of people each year (1). In endemic areas, dengue in-
cidence has a clear seasonal pattern but also, exhibits strong
interannual variation, with major epidemics occurring every few
years (2, 3). In San Juan, Puerto Rico, hundreds of confirmed
cases may be reported over an entire interepidemic season, while
hundreds of cases can be reported every week during the peak of
epidemics (Fig. 1). Timely and effective large-scale interventions
are needed to reduce the serious impacts of dengue epidemics on
health, healthcare systems, and economies (4, 5). Unfortunately,

these epidemics have proven difficult to predict, hindering efforts
to prevent and control their impact.
Research on the determinants of dengue epidemics has in-

cluded both statistical models incorporating historical inci-
dence and climatological determinants (6) and dynamical,
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mathematical models aimed at identifying both intrinsic and ex-
trinsic drivers (7, 8). This body of research led to important in-
sights, such as the putative influence of various climatological
components (9), antibody-dependent enhancement (10, 11),
serotype-specific cross-protection (12, 13), and spatial heterogeneity
(14) on transmission dynamics.
Despite this substantial body of research, there are currently

no operational dengue forecasts with documented prospective
forecast skill, and challenges exist for both forecast development
and assessment. First, the objectives of published forecasts and
outcome metrics vary and are often not tied to specific public
health needs. Second, there have been few accessible dengue
datasets for forecasting research. Third, differences in data and
metrics significantly complicate the comparison of forecasts from
different research groups. Fourth, existing evaluations generally
assess only point prediction accuracy, ignoring information on
forecast confidence. Fifth, evaluations rarely incorporate out-of-
sample testing (testing on either reserved or prospective data
that were not used to develop and fit the models), the most
important test for a forecasting model.
The need to systematically evaluate forecasting tools is widely

recognized (15) and motivated multiple US government agencies
within the Pandemic Prediction and Forecasting Science and
Technology Working Group, coordinated by the White House
Office of Science and Technology Policy, to launch an open
forecasting challenge in 2015, the Dengue Forecasting Project.
First, we worked with epidemiologists from dengue-endemic re-
gions to identify 3 important epidemic forecasting targets: 1) the
intensity of the epidemic peak (peak incidence), 2) the timing of
that peak (peak week), and 3) the total number of cases expected
over the duration of the season (season incidence). Reliable
forecasts of these outcomes could improve the allocation of re-
sources for primary prevention (e.g., risk communication, vector
control) or secondary prevention (e.g., planning medical staffing,
preparing triage units) (16). Additionally, because out-of-sample
prediction is an important test of mechanistic causality, forecasts
could also provide insight on key drivers of dengue epidemics
and therefore, the expected impacts of interventions. Second, we
identified 2 dengue-endemic cities, Iquitos, Peru (17, 18) and San

Juan, Puerto Rico (19), with serotype-specific incidence data and
local climate data that could be released publicly for enough
seasons (13 and 23, respectively) to allow training of models and
forecasting across multiple seasons (Fig. 1). Third, we established
an a priori forecasting framework, including a specific protocol for
submitting and evaluating out-of-sample probabilistic forecasts
made at 4-wk intervals across 4 training and 4 testing seasons for
each of the 3 targets in both locations.

Results
Sixteen teams submitted binned probabilistic forecasts generated
using a variety of approaches, including statistical and mechanistic
models and multimodel ensembles (SI Appendix, Table S1). All
teams used the provided dengue data, 10 (63%) used matched
climate data, 2 used serotype data, and 1 used additional data
on global climate (e.g., Southern Oscillation Index). Three addi-
tional models were developed for comparison: a null model
(equal probability assigned to each possible outcome), a baseline
statistical time series model (a seasonal autoregressive integrated
moving average [SARIMA] model), and a simple ensemble (an
average of the probabilities of the 16 team and baseline forecasts).
After finalizing models and submitting forecasts for 4 training

seasons (2005/2006 to 2008/2009), teams received additional data
and had a maximum of 2 wk to submit forecasts for the testing
seasons (2009/2010 to 2012/2013). Forecasts varied widely (Fig. 2
and SI Appendix, Figs. S1 and S2). For example, forecasts with data
up to week 12 and week 24 predicted that the peaks in the 2012/
2013 season might have been among the lowest or the highest on
record. Confidence also varied: some forecasts were certain of an
outcome being in a particular forecast bin, while others had broad
95% prediction intervals spanning the entire range of historical
values, and some assigned 0 probability to the observed outcome.
We assessed forecast skill using the logarithmic score, a proper

score incorporating probabilistic accuracy and precision. High
logarithmic scores indicate consistent assignment of high prob-
ability to the eventually observed outcome. Forecast skill in-
creased as seasons progressed for most models (Fig. 3). Some
submitted forecasts outperformed both the null and baseline
models for early time points, with numerous models showing
increased skill around the time of the observed peak (median
peak weeks: 22.5 for San Juan and 28 for Iquitos). The peak
incidence target for Iquitos in 2011/2012 was not scored, as no
distinct peak was identifiable. Forecast calibration (e.g., assign-
ing 70% probability to events that occurred 70% of the time)
varied across teams (SI Appendix, Fig. S3) and was strongly as-
sociated with forecast skill (SI Appendix, Fig. S4).
The highest skill early season forecasts (weeks 0 to 24) for

each target–location pair were submitted by Team N (University
of California, San Francisco, peak week, Iquitos), Team E
(VectorBiTE, peak week, San Juan) (20), Team B (Breaking Bad
Bone Fever, peak incidence and total incidence, Iquitos) (21), Team
G (Areté, peak incidence, San Juan), and Team J (Delphi, total in-
cidence, San Juan) (Figs. 3 and 4 and SI Appendix, Table S1).
Many teams outscored both the null model and for each target
except peak week, the baseline model. The ensemble forecast
outperformed most individual models and was the only forecast
to outperform the null model for every target. Training season
forecasts showed similar patterns of low early season skill and
overconfidence by some models, and numerous models out-
performed the baseline and null models (SI Appendix, Fig. S5).The
top teams differed for all targets except peak week in Iquitos (Fig.
4 and SI Appendix, Table S2), but the ensemble forecasts out-
performed the majority of individual forecasts and the null forecast
for all targets for all 8 seasons.
To assess extrinsic factors that may impact forecast skill, we

fitted a series of regression models to target-, location-, and season-
specific variables (SI Appendix). Scores were higher for forecasts
made later in the season (0.043 per week, 95% confidence interval

Fig. 1. Dengue and climate data for Iquitos, Peru and San Juan, Puerto Rico.
The black and colored lines for dengue cases indicate the total and virus-
specific weekly number of laboratory-confirmed cases. The yellow and red
points indicate the peaks in the training and testing datasets, respectively.
The climate data show the weekly rainfall (blue) and mean temperature
(red) for Iquitos and San Juan, respectively, from the National Centers for
Environmental Prediction Climate Forecast System Reanalysis.
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[95% CI]: 0.039 to 0.046), seasons with lower peak incidence (0.43
per location-specific SD, 95% CI: 0.37 to 0.49), seasons with earlier
peaks (0.048 per week prior to long-term location-specific mean,
95% CI: 0.040 to 0.057), San Juan (0.65, 95% CI: 0.54 to 0.76), and
targets with fewer bins (peak and seasonal incidence, 0.0257 per
bin, 95% CI: 0.0221 to 0.0293) (SI Appendix, Table S3).
Comparing high-level forecasting approaches across all targets

and all 8 seasons while controlling for the differences by forecast
week, season characteristics, location, and the numbers of bins
(described above), we found that logarithmic scores were higher
for teams using ensemble approaches (mean difference: 1.02,
95% CI: 0.91 to 1.13) (SI Appendix, Table S3). Forecasts from
models incorporating mechanistic approaches (e.g., compart-
mental models or ensemble models with at least 1 mechanistic
submodel) had lower logarithmic scores (−0.65, 95% CI: −0.80
to −0.49) than purely statistical approaches. Additionally, mod-
els using climate data had lower logarithmic scores (−0.14, 95%
CI: −0.19 to −0.09). Relatedly, we found that forecasts using
ensemble approaches tended to be better calibrated (−0.0010,
95% CI: −0.0034 to 0.0007) and that those using mechanistic
approaches or climate data were less so (SI Appendix, Table S4).
We did not compare models using serotype data or incorporating
vector population dynamics, as only 2 models included serotype
data (using them in different ways), and all but 1 mechanistic
model included modeled vector populations (actual vector data
were not available).

Discussion
Research aimed at forecasting epidemics and their impact offers
tantalizing opportunities to prevent or control infectious dis-
eases. Although many epidemic forecasting tools promise high
accuracy, they have largely been fit to specific, nonpublic datasets
and assessed only on historical data rather than future, unobserved
outcomes. Here, we executed a multimodel assessment of out-of-
sample probabilistic forecasts for key seasonal characteristics of
dengue epidemics. Comparing these forecasts provides insight
on current capabilities to forecast dengue, our understanding of
the drivers of dengue epidemics, challenges to forecast skill, and
avenues for improvement.

Good forecasts should identify possible outcomes relevant to
decision makers and reliably assign probabilities to those out-
comes (22). Proper scores (23, 24) of probabilistic forecasts, such
as the logarithmic score used here, have distinct advantages over
more common point prediction error metrics. Error only measures
1 dimension of forecast skill, the distance between the estimated
and observed outcomes, and does not consider confidence, an es-
sential characteristic for stochastic outcomes. Logarithmic scores for
the submitted forecasts revealed low early season forecast skill, with
many forecasts performing worse than a null forecast that assigned
an equal probability to each possible outcome. Even in endemic
areas with strong seasonal transmission patterns, epidemics are
difficult to predict at time horizons of several months or more.
Nonetheless, several teams consistently outperformed the null

model for each target–location pair, indicating that, even in early
weeks, models provided some reliable information about what
was likely to happen. Not surprisingly, forecasts improved sub-
stantially as seasons progressed and data accumulated. As more
data are reported, the likely outcomes are reduced, and fore-
casting is easier (e.g., if 1,100 cases have been reported by week
40, it is impossible that the season total will be less than 1,000
and extremely unlikely that it would exceed 10,000). Despite this,
some models had decreased or steady late season skill, possibly
indicating that they did not fully account for data updates. Week-
to-week incidence varies substantially, making peaks hard to
identify in real time, and therefore, models with high midseason
to late season skill may be very useful for situational awareness.
Overall scores varied by target, location, and season. Differ-

ences in target-specific scores were not associated with target-
specific entropy, implying that target-specific differences were
more likely due to study design than intrinsic differences in pre-
dictability. Specifically, the peak week target had more bins (52 vs.
11), and therefore, probabilities were distributed across more bins,
leading to lower probabilities for the outcomes and lower scores.
Higher scores for San Juan compared with Iquitos may reflect
differences in dynamics, the availability of more historical data, or
the location-specific bin selection. This difference was not related

Fig. 2. Weeks 12 and 24 forecasts for the 2012/2013 dengue season in
Iquitos and San Juan. The solid black lines indicate the most recent data that
were available to teams to inform these forecasts, and the dashed lines in-
dicate the data that became available later in the season. The colored points
represent point estimates for each team, while the bars represent 50 and
95% prediction intervals (dark and light, respectively). Forecasts for addi-
tional time points and seasons as well as for seasonal incidence are shown in
SI Appendix, Figs. S1 and S2, respectively.

Fig. 3. Forecast skill by team, forecast week, and target in the testing
seasons (2009/2010 to 2012/2013). Solid colored lines represent the scores of
individual teams averaged across all testing seasons for the respective
forecast week, target, and location. For each target, the top forecast for the
first 24 wk (shaded) is indicated in bold (highest average early season score).
The solid black lines indicate the null model (equal probability assigned to all
possible outcomes), the dashed gray lines indicate the baseline model, and
the dotted black lines indicate the ensemble model. Forecasts with loga-
rithmic scores of less than −5 are not shown. Breaks in lines indicate a score
of negative infinity in at least 1 of the testing seasons.
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to location-specific variability, as target-specific entropy was simi-
lar or higher for San Juan (peak week: 1.28 for Iquitos and 2.08 for
San Juan; peak incidence: 1.75 and 1.73, respectively; and season
incidence: 1.28 and 1.39, respectively). However, the long-term
dynamics in the 2 locations were markedly different, with more
recent introduction and serotype replacement in Iquitos vs. de-
cades of hyperendemic transmission in San Juan. The effect of
these differences and simply the availability of more historical data
for San Juan are not distinguishable in this study. Finally, we found
that forecast skill was lower for seasons with later and higher
peaks. The association with later peaks may indicate a particular
challenge of late seasons or a more general association with
atypical peak timing rather than a late season per se, or it may
simply reflect a higher proportion of forecasts being made before
the peak, when there is more uncertainty. Influenza forecasts also
tend to perform worse in late seasons (25). The association of low
forecast skill with high incidence is also a key challenge; seasonal
cycling is generally predictable, but high-incidence epidemics, the
biggest challenge for public health, are the hardest to predict.
A wide variety of modeling approaches was used, including

different criteria for data selection (e.g., climate data, lags), model
frameworks (e.g., mechanistic, statistical), parameter assignment
methods (e.g., fitting, specifying), and forecast generation procedures
(e.g., model selection, combination). Because there are so many
potential options for these components, the 17 models that we
evaluated (teams and baseline) only represent a small subspace
of all possible models. We, therefore, restricted our analysis to 3
high-level characteristics represented by multiple forecasts (climate
data, a mechanistic model, or an ensemble approach), recognizing
that even these findings may not be generalizable. Suitable climatic
conditions are biologically necessary for dengue virus transmission,
yet models including climate data had less skill than models that did
not. One challenge is that climate forecasts may be more useful
than historical data for dengue forecasts, but climate forecasts have
their own uncertainty (26). Moreover, it is possible that better
climate forecasts may not improve dengue forecasts. For example,
climate may determine dengue seasonality, but models charac-
terizing seasonality using historical dengue data alone (e.g., the
baseline SARIMA model) may be able to provide equivalent in-
formation about expected future incidence (6). Incorporating
additional data also increases model complexity in the form of
variability in those data, parameters, and structural assumptions.

Including estimated parameters or model structures that better
match historical data or biological relationships may come at the
expense of lower out-of-sample forecast skill.
Our finding that statistical models generally outperformed

mechanistic models is another indicator of the potential down-
side of overly complex forecasting models. Statistical models may
have performed slightly better because robust uncertainty esti-
mates are easier to generate with standard statistical packages
compared with tailored mechanistic models. For example, the
relatively simple baseline SARIMA models (4 parameters for
Iquitos, 5 for San Juan) were developed with a standard statis-
tical package and generally performed well compared with more
complex models, including having the best overall calibration
and the highest skill forecasts for peak week. Although simple
models have also performed well in other forecasting challenges
(27, 28), mechanistic models should not be dismissed. Mecha-
nistic models allow for the incorporation of biological interac-
tions (e.g., serotype interaction, spatial heterogeneity) and are
essential for estimating the impacts of potential interventions
(29). Statistical models can be used to guide development of
better mechanistic models, capturing key components of good
forecasts, such as seasonality, short-term autocorrelation, and
accurate characterization of uncertainty. Moreover, hybrid ap-
proaches such as ensemble models, including statistical and
mechanistic submodels, may be able to leverage advantages of
both approaches.
Ensemble approaches were used by almost half the teams (7

of 16) (20, 21, 30) and on average, had better calibration and
higher forecast skill than forecasts generated from single models.
Moreover, a simple ensemble of all of the forecasts was among
the highest scoring forecasts for every target and time point and
was the only forecast to outperform the null forecast for all
targets. Despite being a simple average of many forecasts, most
of which performed substantially worse on their own, the ensemble
balanced uncertainty across competing models with different as-
sumptions and parameters, improving calibration by hedging bets
when submodels disagreed and consolidating them when there was
agreement. This cross-model modulation of uncertainty leads to
higher skill forecasts as seen here and in other challenges (25, 28)
and highlights a key advantage of multimodel and multiteam
forecasting: a suite of models is likely to outperform any single
approach (31). It also points to an important future research area:
optimization of ensembles with fitted and dynamic weights.
While these insights can drive future research, there were also

key limitations. For example, 2 potentially important dengue
drivers were not assessed: vector populations and dengue virus
serotypes. Vector data were simply not available on a spatiotem-
poral scale commensurate with the dengue data used here. Be-
cause numerous studies have shown that the interactions between
dengue virus serotypes and human immunity may be a critical
driver of long-term dengue dynamics (32), we provided datasets,
including serotype data. However, only 2 teams chose to use them:
one as an indicator of recent introduction of a serotype and the
other in a complex 4-strain mechanistic compartmental model.
The importance of serotype data for forecasting remains an open
and important question, particularly for long-term dengue-
endemic areas, such as Southeast Asia, where these effects may
be strongest. Datasets with such extensive historical data are rare
but offer an opportunity to identify key epidemic drivers that
could inform current and future surveillance strategies in areas
with less comprehensive historical data. Additionally, the com-
parison of approaches was only among the limited set used by the
teams, not a comprehensive library of approaches. Different data
and models have the potential to improve forecasts, but additional
evidence is needed to understand which data and relationships are
most important for dengue forecasting. Those determinations will
also be key to future surveillance strategies, identifying the most
important data to capture.

Fig. 4. Overall forecast scores for weeks 0 to 24 in the training (2005/2006
to 2008/2009) and testing (2009/2010 to 2012/2013) seasons. Each point is the
average target- and location-specific log score for a model in the training
(left side; light shading) and testing (right side; dark shading) seasons. The
horizontal dispersion within training and testing scores is random to im-
prove visualization. The null forecast for each target is represented by a
horizontal line. Numerous forecasts assigned 0 probability to at least 1 ob-
served outcome. Those individual forecast probabilities were changed to
0.001 before calculating the logarithmic scores.
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The challenge structure also had some limitations. Forecasts
were evaluated on probabilities that were binned according to
prespecified bins. Because targets are on different scales, it is not
clear how to objectively define these bins to enable between-
target comparison. It is also unclear how closely the bins should
be tied to very specific decision-making needs, such as identifying
an “outbreak,” a concept with a wide variety of definitions that
are intrinsically dependent both on surveillance and a threshold
selection algorithm (33). Binned forecasts enable more com-
prehensive comparison of forecasts without selection of a specific
threshold and allow scaling to higher levels, such as the binary
probability of incidence exceeding a particular threshold. The
datasets differed in both amount of data (13 seasons for Iquitos, 23
for San Juan) and characteristics of local dengue (serotype re-
placement in Iquitos, hyperendemicity in San Juan). Yet, those
only represent 2 locations of the many where dengue is endemic.
More datasets will be needed to determine the generalizability of
forecasting tools, but few datasets with this level of detail exist. To
evaluate forecasts over multiple seasons, the project was designed
to use retrospective data and therefore, was not truly prospective.
To facilitate forecasting at 13 time points per season, some future
data were shared. To assure appropriate use, all teams agreed to
forecast using data exclusively from weeks prior to and including
the forecast week, and testing data were only available for 2 wk
and only after selection of a final model and submission of training
forecasts. Another challenge posed by these retrospective datasets
is that they do not represent real-time reporting with its intrinsic
reporting delays, another key forecasting challenge. Short-term
forecasts for seasonal influenza show promise at helping bridge
this gap (25), but comparable data were not available for this
challenge, and the problem is far from solved. The datasets also do
not represent all infections or even all cases, as we focused on
laboratory-confirmed cases. Some cases do not seek care, do not
have access to care, or are misdiagnosed. This may impact forecast
model inputs and outputs, as both the underlying transmission
dynamics and the case burden are imperfectly captured by data on
confirmed cases.
Nonetheless, this project highlights important lessons for the

larger panorama of challenges to advance the research and ap-
plication of epidemic forecasting for public health. First, to make
forecasts relevant to decision making in outbreak responses, tar-
gets should be clearly and quantitatively defined, and they should
directly address specific public health needs. To integrate forecasts
into decision making, it will be vital to refine the way that forecasts
are communicated and maximize their operational relevance.
Second, more participation leads to more information gain both
for improved forecast skill via ensembles and also, for character-
izing the strengths and weakness of different modeling approaches
(25, 28, 34). Opening new data, facilitating access, and presenting
engaging problems can drive participation and enable this type of
research. Third, forecast skill should be openly evaluated on out-
of-sample data with prespecified metrics that consider uncertainty.
Self-evaluation of point predictions on data that are not openly
accessible does little to characterize the utility of a forecasting tool.
Good forecasts should be able to 1) differentiate between possible
out-of-sample outcomes and 2) accurately express confidence in
those predictions. Together, these components can be the building
blocks for future forecasting systems, such as those that have
transformed weather and storm forecasting (35).
Dengue remains a major public health challenge, and decades

of dengue research have led to little progress in prospective
prediction of dengue epidemics. Here, we identified key challenges
and established a framework with datasets to help advance this
research specifically toward targets that would benefit public
health and forecasting science. Next generation models by the
participating teams and others should adopt the testing–training
framework, data, and metrics to assess forecast performance using
the scores of the forecasts published here as benchmarks to

measure advances in forecasting skill. At the same time, it may
be important to refine targets and identify new targets to max-
imize public health utility. Additional datasets to retrospectively
and prospectively develop and validate forecasts will be critical
for demonstrating forecast skill and reliability across multiple
seasons (and multiple locations for broader implementation).
The recent epidemics of chikungunya and Zika viruses have
further complicated clinical and laboratory-based surveillance
for dengue and created a more complex immunological land-
scape for flaviviruses, changes that create new challenges for
interpreting surveillance data and forecasting. There is also a
need for improved surveillance data systems to ensure that data
are machine readable and available in real time to support truly
prospective, real-time forecasts. Lastly, better forecasts will
drive interventions, increasing the importance of better mech-
anistic models that can both forecast and estimate the impact of
interventions. These are formidable challenges, but through
probabilistic forecasting projects, such as the one reported here,
the community can move this research forward, translating the
research into public health tools that can transform the way that
we prepare for and respond to epidemics.

Materials and Methods
Data.Weekly laboratory-confirmed and serotype-specific dengue surveillance
data were provided for 2 endemic locations: Iquitos, Peru (17, 36) and San
Juan, Puerto Rico (19). Data were time referenced starting with 1 January,
and data from 31 December (30 December for leap years) were removed to
ensure 52 wk/y. The week with the lowest average incidence over the
training period was then selected as the end week for the transmission
season (week 26 in Iquitos and week 17 in San Juan) such that each dengue
season began on the following week. All data were final, reflecting all cases
with onset in each week regardless of reporting delays that affected the
availability of data in real time. The data were divided into training data
(Iquitos: 2000/2001 to 2008/2009, San Juan: 1990/1991 to 2008/2009) and
testing data (2009/2010 to 2012/2013 for both locations). Climate and en-
vironmental data were provided for both locations (SI Appendix). Complete
datasets are available at https://predict.cdc.gov and ref. 37. Participants were
permitted to use other data (e.g., social media or demographic data) but not
data on dengue in the study locations or nearby locations unless those data
were made available to all participants.

Forecast Targets. For each season and location, the following targets were
forecasted: Peak week, the week with the highest incidence of dengue (or
undefined if more than 1 wk had the highest number of cases); Peak in-
cidence, the number of dengue cases reported in the peak week; and Total
incidence, the total number of confirmed dengue cases reported over
the season.

Each forecast included a point estimate and a binned probability distri-
bution. For peak week, each bin represented a single week (i.e., 1, 2, . . ., 52).
For peak and total incidence, 11 bins were chosen empirically by setting an
upper bound ∼50% higher than the maxima observed in the training data.
The maximum observed peak incidence in Iquitos was 116 cases, and we
used bins of width 15 cases to cover up to 149 with 10 bins plus a final bin for
150 or more cases. For San Juan, with a maximum of 461 cases, we used bins
of width 50 and 500 or more as the final bin. For total incidence, the maxima
observed were 715 and 6,690 cases for Iquitos and San Juan, respectively. Bin
widths were selected at 100 and 1,000 cases, respectively, with the last bin
for >1,000 or >10,000 cases. Probabilities between 0 and 1 were assigned to
each bin, summing to 1.0 for each specific forecast (e.g., the week 4 forecast
for peak week in San Juan 2005/2006).

Forecasting. The forecasting project started on 5 June 2015, with public
announcement of the challenge and online publication of the training
datasets and forecast templates. Forecasting occurred in 2 stages. First, to
participate, each team was required to submit a model description and a set
of formatted forecasts for all 3 targets at both locations for the last 4 seasons
of the training dataset (2005/2006 to 2008/2009) at 13 time points per season
(weeks 0, 4, 8, . . ., 48) by email by 12 August 2015. Each team explicitly stated
that these were out-of-sample forecasts using only the data from prior time
points in all datasets used. The training forecasts and model descriptions
were evaluated for adherence to the guidelines. Teams meeting those
guidelines received the testing data on 19 August and had 2 wk to generate
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and submit forecasts from the same model for the 4 testing seasons (2009/
2010 to 2012/2013; deadline: 2 September 2015). The only incentives for
participation were the provision of data, the opportunity to compare pro-
spective forecasts, and the opportunity to participate in the development of
this manuscript. Details are available at https://dengueforecasting.noaa.gov
and https://predict.cdc.gov and in ref. 37.

We analyzed 3 additional models for comparison: a null model, a baseline
model, and an ensemble model. The null model assigned equal probabilities
to all bins (e.g., 1 of 52 for each possible peak week). The baseline models
were SARIMA models, capturing seasonal trends and short-term autocorre-
lation [SARIMA(1, 0, 0)(4, 1, 0)12 for San Juan and SARIMA(1, 0, 0)(3, 1, 0)12
for Iquitos] (6). Finally, the ensemble model was created by averaging the
probability bins from all team forecasts and the baseline forecast.

Evaluation. All forecasts were evaluated using the logarithmic score, a proper
scoring rule based on probability densities (24, 38). The logarithmic score is
the average logarithm of the probability assigned to the observed outcome
bin (described above), pi, over n predictions: Sn = 1

n

Pn

i= 1
logðpiÞ. We used

Bayesian generalized linear models to identify season and model charac-
teristics potentially related to forecast skill (SI Appendix). All analyses were
performed in R (https://www.r-project.org/).
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