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Abstract
Freshwater ecosystems, including lakes, streams, and wetlands, are responsive to climate 
change and other natural and anthropogenic stresses. These ecosystems are frequently 
hydrologically and ecologically connected with one another and their surrounding land-
scapes, thereby integrating changes throughout their watersheds. The responses of any 
given freshwater ecosystem to climate change depend on the magnitude of climate forc-
ing, interactions with other anthropogenic and natural changes, and the characteristics of 
the ecosystem itself. Therefore, the magnitude and manner in which freshwater ecosystems 
respond to climate change are difficult to predict a priori. We present a conceptual model 
to elucidate how freshwater ecosystems are altered by climate change. We identify eleven 
indicators that describe the response of freshwater ecosystems to climate change, discuss 
their potential value and limitations, and describe supporting measurements. Indicators are 
organized in three interrelated categories: hydrologic, water quality, and ecosystem struc-
ture and function. The indicators are supported by data sets with a wide range of tem-
poral and spatial coverage, and they inform important scientific and management needs. 
Together, these indicators improve the understanding and management of the effects of 
climate change on freshwater ecosystems.
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1 Introduction

Freshwater ecosystems provide critical ecosystem goods and services to society, sup-
port a disproportionate concentration of the planet’s biodiversity, and are threatened by 
climate change (USGCRP 2018; Dudgeon 2019). Climate change impacts include ris-
ing temperatures, changing precipitation patterns, changing wind speeds, and increasing 
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extreme events, such as heat waves, droughts, floods, and storm surges (IPCC 2021). Cli-
mate-related impacts often occur simultaneously with other anthropogenic environmental 
changes, such as land-use changes. Thus, it is often difficult to attribute ecological changes 
to climate change alone. However, some characteristics of freshwater ecosystems are par-
ticularly sensitive to climate change impacts, and when sufficient data exist, they can serve 
as effective indicators of climate change effects.

Here, we present a suite of indicators that provide valuable information on the effects of 
climate change on freshwater ecosystems. We evaluate indicators by their sensitivity to cli-
mate forcing; the number, spatial extent, and duration of associated measurements; and their 
association with critical ecosystem goods and services, such as the provisioning of plenti-
ful and clean water (Dale and Beyeler 2001; USGCRP 2018). The selected indicators serve 
as baseline inputs for the National Climate Indicator System (NCIS), a component of the 
US National Climate Assessment. In the US, an NCIS was implemented as part of the US 
National Climate Assessment (NCA) (Kenney et  al. 2020) to document the current state 
of climate change impacts in the USA and support sound decision-making. Our selection 
of indicators of the effects of climate change on freshwater ecosystems builds on previous 
NCAs, other reviews and publications on freshwater climate indicators (e.g., Adrian et  al. 
2009; Hering et al. 2010), and existing indicator compilations, such as the US Environmental 
Protection Agency’s (EPA) climate change indicators in the USA (Kurtz et al. 2001).

2  Indicator selection process

The freshwater ecosystem types considered here include lakes, ponds, and reservoirs; rivers and 
streams; and wetlands. No explicit distinction is made between natural and built systems (such 
as reservoirs, impoundments, and canals) or among ecosystems that vary in size (e.g., lakes vs. 
ponds or streams vs. rivers). Given that freshwater ecosystems vary in so many attributes, such 
as the rate and timing of water flow, permanence, depth, and surrounding vegetation, a challenge 
was to identify key indicators of the effects of climate change that apply across freshwater eco-
systems. Indicators were selected to improve the ability to assess climate change effects on (1) 
the amount of freshwater available for aquatic habitat and human use, (2) the integrity and qual-
ity of freshwater ecosystems, and (3) biological conditions that help support goods and services.

Our conceptual model informs the selection of such indicators (Fig. 1). Climate change 
impacts on freshwater ecosystems can occur gradually, such as slow increases in surface 
water temperatures over time, or rapidly and abruptly through increasing frequency of 
extreme events, such as heat waves, forest fires, droughts, or floods. The latter can produce 
rapid and substantial changes in both water quantity and quality (e.g., Williamson et  al. 
2016; Gómez-Gener et al. 2020). Concurrently, non-climate-related factors can also influ-
ence freshwater ecosystems, including watershed land use/land cover, atmospheric depo-
sition, surficial geology and soils, topography, the cryosphere, and ground water. Societal 
factors, such as decisions regarding built infrastructure and water withdrawals, also influ-
ence water quantity, quality, and ecosystem responses to climate change. These non-climate 
and societal factors can also interact with climate, acting as indirect pathways for climate 
impacts on freshwater ecosystems. Together, climate and non-climate factors, includ-
ing extreme events, interact to affect long-term trends and abrupt changes in freshwater 
ecosystems.

Implementation of an indicator system to understand the effects of climate change 
on freshwater ecosystems—or any ecosystem for that matter–depends on several key 
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components. First, sufficient data must exist over broad spatial and temporal scales. Sec-
ond, data must be accessible—both for historical trend analysis as well as for use in 
calibration and validation in forecasting future changes. Finally, the indicator must be 
able to distinguish signals associated with climate change from the effects of other fac-
tors, or the interactions between climate and other stressors must be well understood. 
Monitoring data can help distinguish the relative contributions of climate versus other 
drivers on each indicator.

The data collected for each indicator builds the body of evidence for causal link-
ages between climate drivers and freshwater ecosystem indicator responses (Table 1). 
Note that Table 1 shows predicted responses to a specific directional trend in a climate 
driver and it does not show possible interactions among climate drivers and subsequent 
ecosystem responses. Actual ecosystem responses can be sensitive to multiple aspects 
of climate (e.g., temperature and precipitation) simultaneously. Air temperatures are 
increasing in nearly all regions, but trends in precipitation and wind speeds vary both 
within and across regions. Hence the directional change in some freshwater indicators 

Fig. 1  Conceptual model highlighting how freshwater ecosystems are impacted by climate change. Indi-
cators of the effects of climate change are organized into three categories: hydrologic, water quality, and 
ecosystem structure and function indicators. Climate-driven changes in these indicators, in turn, have impli-
cations for various sectors of society. Note all effects have associated feedbacks represented by the double-
ended arrows



 Climatic Change          (2023) 176:23 

1 3

   23  Page 4 of 20

Ta
bl

e 
1 

 In
di

ca
to

rs
 o

f t
he

 e
ffe

ct
s 

of
 c

lim
at

e 
ch

an
ge

 o
n 

fr
es

hw
at

er
 e

co
sy

ste
m

s. 
D

ire
ct

io
na

l e
ffe

ct
s 

of
 c

ha
ng

es
 in

 c
lim

at
e 

ch
ar

ac
te

ris
tic

s 
(i.

e.
, a

ir 
te

m
pe

ra
tu

re
, p

re
ci

pi
ta

tio
n,

 a
nd

 
w

in
d)

 a
re

 in
di

ca
te

d 
by

 sy
m

bo
ls

, −
 fo

r d
ec

re
as

es
 a

nd
 +

 fo
r i

nc
re

as
es

. T
he

 n
um

be
r o

f s
ym

bo
ls

 in
di

ca
te

s t
he

 m
ag

ni
tu

de
 o

f t
he

 e
ffe

ct
, w

he
re

 su
bs

ta
nt

ia
l e

ffe
ct

s h
av

e 
th

re
e 

sy
m

bo
ls

 
(−

 −
  −

 or
 +

  +
 +

), 
m

od
er

at
e 

eff
ec

ts
 tw

o 
(−

 −
 or

 +
 +

), 
or

 m
in

im
al

 e
ffe

ct
s 

on
e 

(−
 or

 +
), 

th
ou

gh
 th

es
e 

ca
n 

va
ry

 w
ith

 s
ys

te
m

 h
yd

ro
lo

gy
, l

an
d 

us
e,

 a
nd

 la
nd

 c
ov

er
. T

he
 c

ol
um

ns
 o

f 
“l

ak
es

” 
“s

tre
am

s,”
 a

nd
 “

w
et

la
nd

s”
 in

di
ca

te
 th

e 
nu

m
be

r o
f m

on
ito

rin
g 

si
te

s 
w

ith
 1

0 
or

 m
or

e 
ye

ar
s 

of
 c

on
tin

uo
us

 (f
or

 st
re

am
flo

w
) o

r d
is

cr
et

e 
ob

se
rv

at
io

ns
 (a

ll 
ot

he
r i

nd
ic

at
or

s)
 

av
ai

la
bl

e 
th

ro
ug

h 
th

e 
U

SG
S 

an
d 

EP
A

 W
at

er
 Q

ua
lit

y 
Po

rta
l (

se
e 

al
so

 F
ig

. 2
). 

N
A

 n
ot

 a
pp

lic
ab

le
, D

O
C

 d
is

so
lv

ed
 o

rg
an

ic
 c

ar
bo

n,
 C

hl
 a

 c
hl

or
op

hy
ll 
a,

 H
A

B
s 

ha
rm

fu
l a

lg
al

 
bl

oo
m

s. 
St

re
am

flo
w

 re
pr

es
en

ts
 th

e 
nu

m
be

r o
f g

ag
es

 a
ct

iv
e 

du
rin

g 
th

e 
pe

rio
d 

18
89

–2
01

9 
is

 c
on

si
de

re
d 

an
 in

di
ca

to
r o

f t
he

 e
ffe

ct
s 

of
 c

lim
at

e 
ch

an
ge

 o
n 

fr
es

hw
at

er
 e

co
sy

ste
m

s 
an

d 
w

at
er

 c
yc

le
 a

nd
 is

 d
et

ai
le

d 
el

se
w

he
re

 (P
et

er
s-

Li
da

rd
 e

t a
l. 

20
21

). 
St

re
am

 w
at

er
 te

m
pe

ra
tu

re
 d

at
a 

in
cl

ud
e 

gr
ou

nd
w

at
er

 si
te

s

a  So
ur

ce
s o

th
er

 th
an

 th
e 

W
at

er
 Q

ua
lit

y 
Po

rta
l o

r U
SG

S 
N

W
IS

 h
ou

se
 m

os
t d

at
a 

fo
r t

hi
s i

nd
ic

at
or

. S
ee

 te
xt

 fo
r m

or
e 

in
fo

rm
at

io
n

b  Ec
os

ys
te

m
 st

ru
ct

ur
e 

an
d 

fu
nc

tio
n 

in
di

ca
to

rs
 e

xh
ib

it 
re

sp
on

se
s t

o 
cl

im
at

e 
ch

an
ge

 th
at

 a
re

 d
iffi

cu
lt 

to
 d

es
cr

ib
e 

us
in

g 
“ −

 ” 
or

 “
 +

 ” 
re

sp
on

se
s

In
di

ca
to

r c
at

eg
or

y
In

di
ca

to
r

W
ar

m
er

 a
ir 

te
m

-
pe

ra
tu

re
In

cr
ea

se
d 

pr
e-

ci
pi

ta
tio

n
St

ro
ng

er
 w

in
ds

La
ke

s
St

re
am

s
W

et
la

nd
s

H
yd

ro
lo

gy
St

re
am

flo
w

 −
 

 +
  +

  +
 

 −
 

N
A

14
,2

62
N

A
La

ke
 le

ve
l

 −
  −

 
 +

  +
  +

 
 −

 
a

N
A

N
A

W
et

la
nd

s e
xt

en
t

 −
  −

 
 +

  +
  +

 
 −

 
N

A
N

A
a

W
at

er
 q

ua
lit

y
W

at
er

 te
m

pe
ra

tu
re

 +
  +

  +
 

 −
  −

 
 −

 
54

80
29

,9
44

10
1

D
O

C
 +

 
 +

  +
  +

 
 +

 
92

3
50

55
48

C
hl

 a
 a

nd
 H

A
B

s
 +

 
 +

  +
  +

 
 +

 
55

12
33

03
21

W
at

er
 c

la
rit

y
 +

 / −
 

 −
  −

  −
 

 −
 

77
59

21
66

19
D

is
so

lv
ed

 o
xy

ge
n

 −
  −

  −
 

 −
  −

 
 +

 
45

64
17

,2
05

10
0

Ec
os

ys
te

m
 st

ru
ct

ur
e 

an
d 

fu
nc

tio
n

D
ia

to
m

 a
ss

em
bl

ag
e 

co
m

po
si

tio
n

b
b

b
a

a
a

In
ve

rte
br

at
e 

as
se

m
bl

ag
e 

co
m

po
si

tio
n

b
b

b
a

a
a

Ph
en

ol
og

y
b

b
b

a
a

a



Climatic Change          (2023) 176:23  

1 3

Page 5 of 20    23 

will correspondingly vary by region, and there can be heterogeneous responses even 
within regions.

Most data (existing discrete samples, but not necessarily continuous observations) 
supporting each indicator are available through the USGS and EPA Water Quality Portal 
(WQP; https:// www. water quali tydata. us/; Fig. 2; Read et al. 2017). This portal houses 
data from the EPA’s STOrage and RETrieval and Water Quality eXchange (STORET 
and WQX; https:// www. epa. gov/ water data/ stora ge- and- retri eval- and- water- quali ty- 
excha nge) database, USGS NWIS, the USGS BioData database (https:// aquat ic. bioda 
ta. usgs. gov), and the US Department of Agriculture’s (USDA) data delivery applica-
tion (STEWARDS; https:// data. nal. usda. gov/ datas et/ stewa rds- data- deliv ery- appli cation- 
usdaa rs- conse rvati on- effec ts- asses sment- proje ct_ 146). In addition to Federal data, the 
STORET database also contains a substantial amount of Tribal, State, and academic 
data from hundreds of different monitoring agencies and groups, and in many cases, 

Fig. 2  Data availability (K, thousands of sites) and geographic coverage through the USGS and EPA Water 
Quality Portal (https:// www. water quali tydata. us/). Orange and blue lines and mapped locations indicate 
sites with at least 10 and 25 years of data, respectively as of August 2021. See text for more details on data 
availability, including data availability from other sources

https://www.waterqualitydata.us/
https://www.epa.gov/waterdata/storage-and-retrieval-and-water-quality-exchange
https://www.epa.gov/waterdata/storage-and-retrieval-and-water-quality-exchange
https://aquatic.biodata.usgs.gov
https://aquatic.biodata.usgs.gov
https://data.nal.usda.gov/dataset/stewards-data-delivery-application-usdaars-conservation-effects-assessment-project_146
https://data.nal.usda.gov/dataset/stewards-data-delivery-application-usdaars-conservation-effects-assessment-project_146
https://www.waterqualitydata.us/
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substantial data also exist outside of these centralized repositories. Specific data sets 
supporting each indicator are described in more detail below.

3  Hydrology indicators

Hydrologic characteristics, such as streamflow, lake level, and wetland extent, define the 
spatial extent, depth, and flow of freshwater ecosystems. These indicators are directly 
affected by climate change, including changes in precipitation and evaporation, with the 
latter strongly dependent on temperature (USGCRP 2018). Streamflow and other hydro-
logic characteristics, such as the amount of heavy precipitation and the percent of precipita-
tion falling as rain versus snow influence freshwater ecosystems and are used as indicators 
of the effects of climate change on the water cycle (Peters-Lidard et al. 2021). Ecologically, 
drought and reductions in stream baseflows stress organisms, including fishes (Rolls et al. 
2012) and invertebrates (Herbst et al. 2019), can increase concentrations of nutrients and 
other solutes (Olson 2019; Gómez-Gener et al. 2020).

3.1  Lake level

The surface level of lakes integrates the response of lake ecosystems to major climate 
forcings and other sources of inputs and outflows, including withdrawals for human use. 
Changes in water level in large lakes equate to substantial changes in stored volume, sur-
face extent, and aquatic habitat. Low lake levels can affect a variety of ecosystem char-
acteristics; for example, by reducing fisheries habitat and altering the cycling and avail-
ability of toxins such as mercury (Watras et al. 2020). At a continental scale, variations in 
lake levels are linked with broad-scale spatial patterns in precipitation, evaporation, runoff, 
and water use, and thereby are linked with atmospheric and oceanic circulation patterns 
(USGCRP 2018). Since 1992, 58% of the variation in the water levels of 200 globally-
distributed large lakes has been attributed to climate drivers (Kraemer et al. 2020).

Water level data products are available from the US Department of Agriculture 
(USDA), National Aeronautics and Space Administration (NASA), Global Reservoirs 
and Lakes Monitor (G-REALM; https:// ipad. fas. usda. gov/ crope xplor er/ global_ reser voir/). 
These products provide a time-series of water level variations for the world’s largest lakes 
and reservoirs (≥ 100  km2) since 1992. The US National Oceanographic and Atmospheric 
Administration (NOAA) also monitors lake levels in the Laurentian Great Lakes (https:// 
www. coast. noaa. gov/ llv/). Volume scales with surface extent, and thus the Reservoir and 
Lake Surface Area Timeseries (ReaLSAT), which contains surface extent estimates for 
669,107 lakes and reservoirs 0.1–100  km2 in area, 1984–2015, can also inform volumetric 
changes and variability (Khandelwal et al. 2022).

3.2  Wetland extent

The total area and types of wetlands regulate the ecosystem goods and services provided. 
Wetlands protect the downstream landscape from floods and storm surges, regulate aspects 
of water quality, increase carbon sequestration, and support fisheries, waterfowl migra-
tions, and rare and endangered species populations (Zedler and Kercher 2005). Reductions 
in precipitation and increases in temperature can convert open-water emergent marshes to 
a drier wetland type with widespread consequences for associated biota, reduced wetland 

https://ipad.fas.usda.gov/cropexplorer/global_reservoir/
https://www.coast.noaa.gov/llv/
https://www.coast.noaa.gov/llv/
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connectivity to lakes and rivers, and reduced carbon fluxes (Johnson et al. 2010; Olefeldt 
et  al. 2013; Cohen et  al. 2016). There is generally a paucity of long-term and spatially 
extensive data from which to develop climate change indicators in wetlands, but wetland 
extent is the exception.

Changes in the extent of regional wetland complexes, such as the Prairie Pothole Region 
wetlands, may be an especially good indicator of climate change effects on wetlands (Nie-
muth et  al. 2010). Hydrologic modeling suggests that warming will lead to substantial 
shortening of the flooded state of these wetlands (Johnson et al. 2010). However, precipita-
tion is also important. For example, from 1997 to 2009 these wetlands experienced longer 
hydroperiods because of exceptionally wet conditions (Dahl 2014), which underscores the 
difficulty of predicting ecosystem responses and discriminating natural decadal-scale vari-
ability from unidirectional effects of other aspects of climate change.

Wetland extent and type in the conterminous US are available from several sources. First, 
data have been reported on a semi-regular schedule since the 1950s by the US Fish and 
Wildlife Service (FWS), and National Wetland Status and Trends reports. In addition, some 
state and regional wetland area assessments are available online (www. fws. gov/ Wetla nds/ 
Status- and- Trends/ index. html). Finally, the National Wetland Condition Assessment, con-
ducted every 5 years beginning in 2011, also provides some data on the extent. This survey 
of ~ 1000 sites was the first widespread ecosystem assessment of wetland condition in the 
USA at a continental scale (Kentula and Paulsen 2019). However, this dataset has limited 
temporal coverage to date and hence a limited ability to detect climate change effects.

4  Water quality indicators

Water quality describes the physical, chemical, or biological characteristics of the water in 
an aquatic ecosystem relevant to human uses. Water quality indicators considered herein 
are water temperature, salinity, dissolved organic carbon, chlorophyll a and harmful algal 
blooms, water clarity, and dissolved oxygen.

4.1  Water temperature

Water temperature responds to climate change through changes in air temperature, 
solar radiation, evaporative losses, and surface and subsurface hydrologic and material 
exchanges. Freshwater ecosystem temperatures vary substantially both spatially and tem-
porally (Hill et al. 2014; O’Reilly et al. 2015). Increasing temperature can directly affect 
dissolved oxygen levels (Jane et al. 2021), and the temperature dependence of biological 
processes means that warming can also affect several ecological properties, including the 
likelihood of harmful algal blooms (Mantzouki et al. 2018), species distributions (Comte 
and Olden 2017), food web structure (Gilman et  al. 2010; Rohr et  al. 2011; Dobrowski 
et al. 2013), and ecosystem structure and function.

Three of the more notable changes in the thermal properties of freshwater ecosystems 
in response to climate warming are increases in water temperature, increases in thermal 
stratification, and decreases in the duration of seasonal ice cover (Winder and Schindler 
2004; Kaushal et al. 2010; O’Reilly et al. 2015; Sharma et al. 2019; Pilla et al. 2020; Wool-
way et al. 2020; Jane et al. 2021). Water temperatures are also influenced by precipitation 
and associated terrestrial inputs of nutrients, sediments, and organic matter that can reduce 

http://www.fws.gov/Wetlands/Status-and-Trends/index.html
http://www.fws.gov/Wetlands/Status-and-Trends/index.html
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water clarity and thus increase heat absorption in lake surface waters, often leading to less 
pronounced warming, or even cooling, of deeper waters (Rose et al. 2016).

Water temperature data for the past several decades are available for thousands of 
streams, rivers, and lakes (but few wetlands) across the USA. The USGS continuously 
monitors water temperature at ~ 1200 river and lake sites. The USGS Spatial Hydro-Eco-
logical Decision System (SHEDS; http:// db. ecosh eds. org/) also provides measurements 
on > 7000 sites and > 18,000 time-series. In total, there are over 35,000 freshwater ecosys-
tem sites with at least 10  years of data, and over 7000 sites with over 25  years of data 
(Fig.  2; Read et  al. 2017)), but only a minority of sites has been designated as suitable 
for climate-related monitoring (Lins 2012) because other factors often influencing stream 
temperatures (Poole and Berman 2001; Caissie 2006). Additional lake temperature data are 
available through publications by the Global Lake Temperature Collaboration (http:// www. 
laket emper ature. org/) (O’Reilly et  al. 2015; Sharma et  al. 2016) and the Environmental 
Data Initiative (EDI; https:// envir onmen talda taini tiati ve. org/), including datasets published 
therein (e.g., Pilla et al. 2021; Stetler et al. 2021).

Ice cover records for some freshwater ecosystems go back centuries (Magnuson et al. 
2000; Sharma et al. 2016, 2019), and records for over 800 lakes are available through the 
National Snow and Ice Data Center (http:// nsidc. org/), with many trends published (Mag-
nuson et al. 2000; Benson et al. 2012). Ice cover is also measured through repeated aerial 
photographs and satellite imagery (e.g., Duguay et al. 2003; Surdu et al. 2014).

4.2  Dissolved organic carbon

Dissolved organic carbon (DOC) is a heterogeneous mix of compounds derived from the 
incomplete decomposition of organic matter that often gives waterbodies a yellow to brown 
hue. Wetlands are the dominant source of DOC to other freshwater ecosystems (Gergel 
et  al. 1999), so changes in wetland hydrology will have strong effects on wetland DOC 
export to downstream aquatic ecosystems. DOC has multiple roles in aquatic ecosystems, 
including regulating the fate of contaminants such as heavy metals and pesticides, solar 
UV disinfection of parasites and pathogens, and microbial community respiration. DOC 
also controls dissolved oxygen supply and renewal and contributes to the production of 
carcinogenic disinfection byproducts during water treatment (Solomon et  al. 2015; Wil-
liamson et al. 2017; Kritzberg 2017).

DOC levels in freshwater ecosystems are characterized by measuring DOC quantity 
(concentration) and quality (typically dissolved absorbance, otherwise referred to as color), 
and they have been shown to respond to both precipitation and temperature. The ratio of 
color to quantity, referred to as DOC-specific absorbance, has likewise been documented to 
be responsive to increasing temperature and precipitation (Williamson et al. 2014; Glaser 
et  al. 2016). Concentrations of DOC have been increasing in many inland waters in the 
Northeast USA and in many parts of Northern Europe since about 1990 and have been 
attributed to climate change, reductions in acid deposition, and land use change (Monteith 
et al. 2007; Weyhenmeyer and Karlsson 2009; Meyer-Jacob et al. 2019).

There are over 7000 freshwater ecosystem sites with at least 10 years of DOC meas-
urements, and about 500 sites with at least 25 years of measurements (Fig. 2). DOC data 
are also collected as part of the US EPA National Aquatic Resource Surveys of lakes and 
streams. In general, long-term DOC data are not as available as other standard water qual-
ity data, but a strong surge in interest in the role of DOC in freshwater ecosystems has led 
to a widespread increase in data in recent years.

http://db.ecosheds.org/
http://www.laketemperature.org/
http://www.laketemperature.org/
https://environmentaldatainitiative.org/
http://nsidc.org/
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4.3  Chlorophyll a and harmful algal blooms

Chlorophyll a is a pigment found in all photosynthetic green plants and algae, which form 
the base of most freshwater food webs. Chlorophyll a concentrations are used as a sur-
rogate of primary producer biomass. Freshwater ecosystems with high chlorophyll a con-
centrations often have a green color to them. High algal biomass can contribute to oxygen 
depletion in waterbodies and subsequent hypoxic and anoxic conditions when algae die, 
sink, and decompose.

High nutrient and chlorophyll a concentrations are often associated with harmful algal 
blooms, in which cyanobacteria can produce toxins that are harmful to people and wild-
life. Harmful algal blooms tend to occur at higher water temperature and when the water 
column exhibits greater thermal stratification (O’Neil et al. 2012), and temperature is one 
of the most important factors affecting the occurrence and concentrations of toxins (Mant-
zouki et al. 2018). There is some evidence that harmful algal blooms are increasing in fre-
quency, magnitude, and duration globally (Huisman et al. 2018; Ho et al. 2019). However, 
climate-induced increases in thermal stratification may also reduce chlorophyll a and algal 
biomass of large lakes by inhibiting the input of nutrients to surface waters. In a study of 
188 globally distributed lakes, warming was associated with chlorophyll increases in lakes 
with high baseline chlorophyll, whereas it was associated with chlorophyll decreases in 
lakes with low baseline chlorophyll (Kraemer et al. 2017).

Chlorophyll a concentrations and harmful algal blooms in freshwater ecosystems also 
are responsive to changes in nutrients, especially phosphorus and nitrogen (Carlson 1977; 
Nürnberg 1996; Elser et al. 2007). Increases in precipitation can increase nutrient inputs, 
especially in agricultural and urbanized watersheds, whereas droughts may decrease water-
shed nutrient inputs substantially (Rose et  al. 2017). However, drought can increase the 
loading of nutrients from lake sediments when it is associated with prolonged anoxia. 
Attributing changes in chlorophyll a and harmful algal blooms to climate change must 
account for nutrient trends and the possibility of non-climate factors, such as land use, 
changes driving changes in nutrient concentrations.

There are over 10,000 freshwater ecosystem sites with at least 10 years of chlorophyll 
a data (Fig. 2). However, only about 1000 sites have at least 25 years of data, and notably 
few occur in the Western USA. Some data are available on lake chlorophyll a and cyano-
toxin concentrations from the US EPA’s National Lakes Assessment (USEPA 2009). Addi-
tionally, Filazzola et al. (2020) compiled a dataset of 228,168 chlorophyll measurements 
from 11,959 lakes around the world, including data from the LAGOS (LAke multi-scaled 
GeOSpatial and temporal database; Soranno et  al. 2015), which includes observations 
throughout the Midwest and Northeast USA. Measurements of harmful algal blooms are 
less common than chlorophyll a measurements, and uniform standards defining blooms are 
generally lacking.

4.4  Water clarity

Water clarity is one of the most universal metrics of water quality due in large part to the 
ease of measurement (e.g., with Secchi disks) and the association of clear water with both 
health and aesthetics. Water clarity regulates key aspects of aquatic ecosystems including 
the water temperature, the thermal structure, and the compensation depth, which is defined 
as the depth at which daily photosynthesis is equal to autotrophic respiration. Low water 
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clarity can contribute to hypoxia and anoxia at deeper depths (Jane et al. 2021). Both long-
term decreases and increases in water clarity have been reported and have been associated 
with changes in precipitation and land use practices (e.g., Lottig et al. 2014). In addition to 
climate change, other factors, such as changes in land use/land cover and the presence of 
invasive mussel species, can affect water clarity (Bunnell et al. 2021).

The US Figure contains data from over 12,000 sites that have over 10 years of water 
clarity measurements, and over 2000 sites with at least 25 years of measurements (Fig. 2). 
Long-term clarity trends in thousands of lakes have been published (Lottig et  al. 2014) 
and are available through citizen science programs such as the Secchi Dip-In (http:// www. 
secch idipin. org/). These in situ records have been matched with satellite reflectance meas-
urements, providing over 250,000 paired observations, thereby enabling the estimation of 
water clarity at thousands more waterbodies (Ross et al. 2019). State and tribal water man-
agement agencies also collect water clarity data for many lakes and streams.

4.5  Dissolved oxygen

Dissolved oxygen regulates many aspects of aquatic ecosystems, and low dissolved oxygen 
can be lethal to many aquatic organisms. Analysis of long-term dissolved oxygen records 
indicates that both surface- and deep-waters in lakes have lost oxygen since 1980 at rates 
2–9 times faster than the oceans (Schmidtko et al. 2017; Jane et al. 2021). As the water 
warms, oxygen solubility declines, and solubility loss explains most of the observed long-
term decline in lake surface dissolved oxygen concentrations (Jane et al. 2021). In contrast, 
deep-water DO declines in lakes have been associated with stronger thermal stratification 
and water clarity losses. Warmer surface waters and longer periods of seasonal stratifica-
tion reduce dissolved oxygen concentrations by enabling more time for oxygen consump-
tion and drawdown to occur and increasing the resistance to renewal from the atmosphere 
(North et al. 2014; Sahoo et al. 2016). Freshwater ecosystems with high algal productivity 
also often have low dissolved oxygen in deep waters. As algal cells sink and decompose, 
oxygen is drawn down, leading to low deep-water dissolved oxygen concentrations. In turn, 
when dissolved oxygen is depleted, sediments can release phosphorus (Knoll et al. 2018), 
which can further stimulate high algal growth and generally unfavorable water quality con-
ditions (Mallin et al. 2006; Jeppesen et al. 2010).

There are about 30,000 freshwater ecosystem sites, predominantly streams, with at least 
10  years of dissolved oxygen measurements, and approximately 4000 sites with at least 
25 years of measurements (Fig. 2). Long-term (at least 15 years of observations) lake dis-
solved oxygen measurements have been compiled for over 400 lakes around the world and 
are publicly available in EDI (Stetler et al. 2021; Jane et al. 2021).

5  Ecosystem structure and function indicators

Ecosystem structure and function indicators are composites of multiple ecological 
attributes (e.g., species) that, when combined, provide an integrative assessment of 
ecological status and integrity. The climate preferences and distributions of a range 
of many aquatic organisms are well-documented, and many long-term monitoring 
programs have been conducted in the last half-century (Noss 1990; Rohr et al. 2007). 
These data sets enable biodiversity metrics to serve as indicators of the effects of cli-
mate change on freshwater ecosystems.

http://www.secchidipin.org/
http://www.secchidipin.org/
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5.1  Phenology

Climate change alters seasonal dynamics of organism behavior and associated events, and 
climate change-induced phenological shifts are well-documented for many species (e.g., 
While and Uller 2014; Thackeray et  al. 2016; Cohen et  al. 2018). Phenological changes 
can affect the fitness of organisms by altering the synchrony between predators and their 
prey or food resources and between hosts and parasites (Winder and Schindler 2004; Mas-
Coma et al. 2009). In many regions, seasonal stages or phases are shifting earlier for spring 
events and later for autumn events. Freshwater phytoplankton is among the most sensi-
tive taxa to phenological changes associated with both warming temperatures and changing 
precipitation (Thackeray et al. 2016). In wetlands, the flowering and greening of wetland 
plants and the calling and breeding of frogs are highly sensitive to cumulative temperature 
(degree days) and thus are useful phenological indicators (Cohen et al. 2018). However, to 
our knowledge, large-scale, repeated measurements of phenology have not been collected 
for US wetland plants, despite the fact that it can be monitored at a variety of scales using 
aerial photographs, and LIDAR could be used to monitor emergent vegetation (e.g., Salas 
2021).

Climate drivers of phenology vary by latitude. In a meta-analysis of hundreds of pub-
lished studies on diverse taxa, researchers found that temperature was the primary driver 
of phenological changes at mid-latitudes, whereas both temperature and precipitation were 
important drivers at low latitudes. These drivers correspond to the dominant factors reg-
ulating seasonality across latitudes (Cohen et  al. 2018). Additionally, aquatic organisms, 
such as frogs, toads, and salamanders, have exhibited a more pronounced shift toward ear-
lier breeding dates at high latitudes than at low latitudes (While and Uller 2014). Various 
other factors can mediate the sensitivity of organisms to climate-associated phenological 
changes. For example, nutrient concentrations and enrichment can regulate the sensitivity 
of phytoplankton phenology to climate-induced changes in water temperature and stratifi-
cation (Thackeray et al. 2008; Feuchtmayr et al. 2012).

Substantial efforts have been made to generate phenological datasets that contain many 
taxonomic classes, and many datasets have been released with scientific publications (e.g., 
Brown et al. 2016). The US National Phenology Network maintains data on phenological 
data on many different species and ecosystems (Schwartz et  al. 2012). However, limited 
data from many geographically under-sampled regions and species means that phenologi-
cal changes may be underestimated, and freshwater organisms have been under-represented 
in some studies (e.g., Cohen et al. 2018).

5.2  Diatoms

Diatoms are a class of algae that form microscopic cell walls containing silica. These 
cell walls are frequently preserved in sediments after organisms die, creating a fos-
sil record in the sediments. The records preserve changes in diatom assemblages (i.e., 
increases in the relative abundances of some taxa, declines in others) associated with 
climate change over centennial to millennial time scales. The primary link between 
diatom ecology and climate is via wind and stratification. For example, different dia-
tom species have different mixing depth optima. Therefore, the change in abundance 
of different diatom species in sediment records can be used to estimate mixing depths 
or track changes in mixing depths resulting from changes in wind speed (Saros et al. 
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2012, 2016). However, other factors such as pH, Si, and salinity can also affect dia-
tom species assemblages and must be considered when interpreting paleolimnological 
records.

Coupling lake-specific information with diatom fossil records enables a long-term 
perspective of climate-driven changes in ecosystem structure. In some regions, warm-
ing has led to shallower lake mixing, particularly where wind speeds have declined or 
water clarity has decreased, leading to an increase in diatom species that have shal-
lower mixing depth optima (Saros et  al. 2012; Brown et  al. 2017). In other areas, 
warming has led to deeper lake mixing, particularly where wind speeds have increased, 
leading to an increase in diatom species that have deeper mixing depth optima (Saros 
et al. 2012, 2016).

The primary data source for diatom records in the USA is the Diatom Paleolim-
nology Data Cooperative, (https:// diatom. ansp. org/ dpdc/; Sullivan and Charles 1994). 
This cooperative contains data for dozens of lake sites, with diatom records spanning 
hundreds to thousands of years. However, the need to continually harmonize taxonomy 
represents an important challenge with respect to the integration and comparison of 
data collected by different organizations and individuals (Lee et al. 2019; Alers-García 
et  al. 2021). Other data sources include the Diatoms of North America database as 
a source of at least taxonomic information: https:// diato ms. org. Additionally, the US 
EPA National Lakes Assessment surveys collect diatom data.

5.3  Invertebrates

Invertebrates are key consumers in aquatic ecosystems that can both contribute to and pro-
vide useful metrics of water quality. Macroinvertebrate assemblages are frequently measured 
to monitor stream, river, and lake health. Thermal preferences for benthic macroinvertebrates, 
which are the primary food sources of many economically important fishes, are relatively well 
established (U.S. Environmental Protection Agency 2016), and the spatial distribution of mac-
roinvertebrates also is well documented in many regions. Multispecies distribution models and 
other statistical techniques can help understand and quantify macroinvertebrate biodiversity 
shifts and regional sensitivity to climate warming and streamflow change (Chinnayakanahalli 
et al. 2011; Domisch et al. 2013; Butman et al. 2016; Hawkins and Yuan 2016; Pyne and Poff 
2017; Mustonen et al. 2018).

In the USA, the National Water Quality Assessment (NAWQA; https:// water. usgs. 
gov/ nawqa/) program had standardized monitoring of water quality and macroinverte-
brate assemblages in stream and river networks in over 40 watersheds from 1991 to 2019, 
and the US EPA through the National Aquatic Resource Survey program has conducted 
nationwide surveys of river and lake macroinvertebrates every 5  years, beginning in 
2004 and lakes beginning in 2007 (USEPA 2009; U.S. Environmental Protection Agency 
2016). Additionally, the US EPA maintains a repository of state river bioassessment sur-
veys since 2000 in a central database (STORET; http:// www. epa. gov/ STORET/ dw_ home. 
html), although states may use different sampling protocols and are not necessarily taxo-
nomically consistent. The USGS BioData program (MacCoy 2011) also contains mac-
roinvertebrate data as well as data for algae, fish, and supporting habitat data from rivers 
and streams. Standardized measurements of macroinvertebrate biodiversity are also avail-
able from other regions, including > 600 reference streams and rivers sampled between 
1978 and 2002 in the UK (https:// www. ceh. ac. uk/ servi ces/ rivpa cs- refer ence- datab ase).

https://diatom.ansp.org/dpdc/
https://diatoms.org
https://water.usgs.gov/nawqa/
https://water.usgs.gov/nawqa/
http://www.epa.gov/STORET/dw_home.html
http://www.epa.gov/STORET/dw_home.html
https://www.ceh.ac.uk/services/rivpacs-reference-database


Climatic Change          (2023) 176:23  

1 3

Page 13 of 20    23 

6  Future research needs

Substantial data exist for most of the indicators identified herein, but many gaps per-
sist. Technologies such as high-frequency in situ autonomous environmental sensors and 
remote sensing can complement existing datasets and traditional sampling approaches to 
expand the temporal and/or spatial scale of observations. Complementing historic aquatic 
resource monitoring (e.g., USGS stream gage sites), new freshwater network data collec-
tions conducted at broad spatial scales (e.g., in the US National Ecological Observatory 
Network; Goodman et al. 2014) and citizen-scientist programs such as the Secchi Dip-In 
(https:// www. nalms. org/ secch idipin/) can provide data to improve understanding of climate 
change impacts, as well as foster greater scientific engagement and literacy (Bonney et al. 
2009). However, many sensor networks and sensor technologies are relatively young. Addi-
tionally, although some remote sensing observations extend as early as the 1980s, in some 
cases (e.g., Sentinel series of satellites) observations have only existed since the 2010s. 
Another approach to deriving the greatest value from observations lies in assessing the 
degree to which individual observations are sentinels of broader spatial patterns and trends 
(Adrian et al. 2009; Williamson et al. 2009) by understanding covariance among ecologi-
cal characteristics. Assessments of indicator synchrony and covariance across ecosystems 
could enable the selection of a reduced number of surveyed sites that are still broadly rep-
resentative (Ricker and Ruggiero 1998; Murdoch et al. 2014).

Understanding the effects of climate change requires the integration of many diverse 
datasets. These data should be publicly accessible and of known accuracy and precision, 
with associated metadata and provenance documentation. Maintaining and updating envi-
ronmental datasets are not trivial. Currently, there are many different data repositories, 
data standards, and types of data that range in quality from raw and unfiltered to highly 
processed and documented. This heterogeneity is due in part to the fact that there are sev-
eral different types of freshwater ecosystems and many different organizations monitoring 
them. There is no single central federal freshwater ecosystem database in the USA, but the 
USGS and EPA Water Quality Portal represent an important step toward database cen-
tralization. Additional data repositories such as the Environmental Data Initiative (https:// 
envir onmen talda taini tiati ve. org/) and Internet of Water (https:// inter netof water. org/) are 
also increasing the availability of key indicator data. Additionally, many state and local 
agencies and non-profits also collect freshwater ecosystem data and maintain water quality 
databases. Pulling all the necessary data together from repositories and more diverse and 
often unstructured sources could effectively leverage substantial past data collection efforts 
to better understand climate impacts on freshwater ecosystems.

Wetlands stand out among freshwater ecosystems in their lack of adequate databases 
to examine the effects of climate change. In addition to the Wetlands Status and Trend 
reports; https:// www. fws. gov/ wetla nds/ status- and- trends/), the National Wetland Condi-
tion Assessment was conducted in 2011 and 2016, and it is planned to continue at 5-year 
intervals. This ecosystem assessment of ~ 1000 sites consists of biotic and abiotic indica-
tors, including several discussed above for other freshwater ecosystems. Thus, in the future, 
much better indicators may be available for wetlands but only at a course frequency.

Climate change is altering the abundance, growth, recruitment, and ranges of many 
aquatic taxa. Freshwater fishes and amphibians are threatened, with particularly strong 
effects on cold-adapted species, including extirpation at their warmer range boundaries 
(Lynch et  al. 2016; Comte and Olden 2017; Cohen et  al. 2019). Species range shifts 
are also occurring, and species movements are often outpaced by the speed at which 

https://www.nalms.org/secchidipin/
https://environmentaldatainitiative.org/
https://environmentaldatainitiative.org/
https://internetofwater.org/
https://www.fws.gov/wetlands/status-and-trends/
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isotherms are moving (Isaak and Rieman 2013; Comte and Olden 2017; Woolway and 
Maberly 2020). These changes can provide important indicators of the ecological and 
economic impacts of climate change when sufficient data are available. Some biotic 
characteristics can be more difficult to measure than physical or chemical characteris-
tics, but they often provide essential information on ecological functioning and ecosys-
tem services provisioning. Growing monitoring programs and the maturation and com-
pilation of databases help enable a better understanding of freshwater biotic responses 
to climate change.

A final key challenge lies in attributing specific observed changes to climate alone. 
Freshwater ecosystems face multiple anthropogenic stressors concurrent with climate 
change. These include habitat loss, invasive species, pollution, and emerging diseases 
(Rohr et  al. 2011). Many of these other stressors are correlated with climate change 
impacts in space or time. Additionally, due to the combinations of factors driving fresh-
water ecosystem change, many ecosystems are experiencing novel conditions. Ecological 
novelty may cause changes in ecosystem dynamics that may be difficult to attribute to cli-
mate change but facilitate increased extinction risks (Pandolfi et al. 2020). It is important to 
recognize that, even though the indicators discussed here are well documented to be sensi-
tive to climate change, a correlation between any proposed indicator and climate change 
does not necessarily mean that climate change is the causal driver. There are, however, 
approaches to strengthen the inference that an indicator is indeed causally linked to climate 
change. For example, when data are available, other stressors can be included with cli-
mate in a statistical modeling framework to parse the effects of climate change from other 
changes. In addition, estimates of sensitivity to climate based on field observations can 
be validated with experimental studies. Additionally, human impacts should be assessed 
to characterize the degree to which a particular freshwater ecosystem is likely to be more 
sensitive to other environmental changes (such as changes in land use) instead of climate 
change. Monitoring networks that have designated reference ecosystems, where anthropo-
genic inputs and disturbances are minimal, are of great value in identifying climate change 
impacts (Stoddard et al. 2006; US EPA 2016).

We propose the inclusion of eleven indicators of the effects of climate change on fresh-
water ecosystems (Table 1) as input into the ongoing US National Climate Assessments. 
This work highlights the utility of a number of commonly measured characteristics that 
can provide critical information on the impacts of climate change on freshwater ecosys-
tems. The ultimate effects of these impacts will depend in large part on the magnitude of 
climate change, and the future actions we take as a society to protect and conserve fresh-
water resources, not only from climate change but also from other interacting stressors that 
threaten freshwater species and the goods and services these ecosystems provide.
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