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Humans are altering the distribution of species by changing the
climate and disrupting biotic interactions and dispersal. A funda-
mental hypothesis in spatial ecology suggests that these effects
are scale dependent; biotic interactions should shape distributions at
local scales, whereas climate should dominate at regional scales. If
so, common single-scale analyses might misestimate the impacts of
anthropogenic modifications on biodiversity and the environment.
However, large-scale datasets necessary to test these hypotheses
have not been available until recently. Here we conduct a cross-
continental, cross-scale (almost five orders of magnitude) analysis of
the influence of biotic and abiotic processes and human population
density on the distribution of three emerging pathogens: the
amphibian chytrid fungus implicated in worldwide amphibian
declines and West Nile virus and the bacterium that causes Lyme
disease (Borrelia burgdorferi), which are responsible for ongoing
human health crises. In all three systems, we show that biotic
factors were significant predictors of pathogen distributions in
multiple regression models only at local scales (∼102–103 km2),
whereas climate and human population density always were sig-
nificant only at relatively larger, regional scales (usually >104 km2).
Spatial autocorrelation analyses revealed that biotic factors were
more variable at smaller scales, whereas climatic factors were more
variable at larger scales, as is consistent with the prediction that
factors should be important at the scales at which they vary the
most. Finally, no single scale could detect the importance of all
three categories of processes. These results highlight that common
single-scale analyses can misrepresent the true impact of anthro-
pogenic modifications on biodiversity and the environment.
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Humans presently are contributing to unprecedented rates of
infectious disease emergence (1, 2), climate change (3, 4),

and biodiversity loss and homogenization (5, 6). The ramifica-
tions and interdependences of these environmental changes repre-
sent some of the most important and challenging scientific problems
of today. However, a fundamental but undertested hypothesis in
ecology—that the influence of biotic and abiotic drivers on species
distributions is scale dependent (7–10)—poses a serious challenge
to addressing these daunting problems.
It has long been understood that three processes generally dictate

the distribution of all organisms: environmental filtering (abiotic
conditions), species interactions (biotic conditions), and dispersal
limitations (11). Because climate mostly varies regionally (<104 km2

according to the Intergovernmental Panel on Climate Change) with
relatively minor variation at smaller, local scales (12), it has been
widely hypothesized that environmental filters operate mostly at
larger, regional scales (>104 km2) (Fig. 1) (7–10, 12). In contrast,
because there can be considerable variation in species composition
locally, biotic processes, such as competition, predation, mutualism,
and parasitism, are thought to influence distributional patterns
primarily at smaller scales (Fig. 1) (7–10). A result of these hy-
potheses is that the outcomes of single-scale analyses might
misrepresent the true consequences of natural and human-

induced changes to the environment. For example, analyses across
geographic areas of different sizes can produce differently sha-
ped elevation–richness curves (10), give contrasting richness–
productivity relationships (13), alter the perceived importance of
competition and predation on biodiversity (11), and change the
factors found to influence community assembly (14).
Although there have been many calls to test these scale-based

hypotheses (1, 7–10, 15, 16), there are several reasons why they
have not been tested at a broad spectrum of scales (but see ref.
17). First, it can be logistically difficult to repeat experiments at
multiple scales, and it often is challenging to determine which
scales are most important for a given system (7, 10, 18). Most
importantly, however, only recently have the necessary computing
power and large-scale, spatially explicit datasets of species occur-
rence and abiotic factors become available. Therefore, although
we have contemporary tests of theory for how deterministic and
stochastic processes associated with environmental filtering, biotic
processes, and dispersal affect species distributions on relatively
small spatial scales (e.g., ∼100 km2) (10, 13, 17), the lack of tests
showing how these factors influence distributions when scaled up
to larger (regional to global) areas can be an impediment for
identifying generalities in ecology. For example, it has been sug-
gested that controversy surrounding the hypotheses that infectious
diseases are being increased by anthropogenic climate change and
biodiversity loss (i.e., the dilution effect) is at least partly a product
of the scale dependence of these abiotic and biotic factors on
disease risk (1, 15, 16).
Here, we use species distribution models and multimodel in-

ference approaches to examine the influences of biotic and abiotic
processes and human population density (which can have impacts

Significance

For four decades, ecologists have hypothesized that biotic inter-
actions predominantly control species’ distributions at local scales,
whereas abiotic factors operate more at regional scales. Here, we
demonstrate that the drivers of three emerging diseases (am-
phibian chytridiomycosis, West Nile virus, and Lyme disease) in
the United States support the predictions of this fundamental
hypothesis. Humans are contributing to biodiversity loss, changes
in dispersal patterns, and global climate change at an un-
precedented rate. Our results highlight that common single-scale
analyses can misestimate the impact that humans are having on
biodiversity, disease, and the environment.

Author contributions: J.M.C., D.J.C., A.J.B., E.M.F., C.N.O., J.C.R., E.L.S., X.L., and J.R.R.
designed research; J.M.C. performed research; J.M.C., D.J.C., and J.R.R. analyzed data;
and J.M.C. and J.R.R. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: jcohen9@mail.usf.edu.
2A.J.B., E.M.F., C.N.O., J.C.R., and E.L.S. contributed equally to this work.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1521657113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1521657113 PNAS Early Edition | 1 of 6

EC
O
LO

G
Y

PN
A
S
PL

U
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1521657113&domain=pdf&date_stamp=2016-05-26
mailto:jcohen9@mail.usf.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1521657113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1521657113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1521657113


on dispersal) on the distributions of three emerging pathogens
across seven spatial scales (quadrupling in area at each step; Fig. S1)
spanning nearly five orders of magnitude. Two of these pathogens,
West Nile virus (WNV) and Borrelia burgdorferi, the bacterium that
causes Lyme disease, are responsible for ongoing human health
crises (19, 20). The third pathogen, the chytrid fungus Batracho-
chytrium dendrobatidis (Bd), is considered one of the deadliest or-
ganisms on the planet because of its association with hundreds of
amphibian extinctions in the last half century (21, 22). We chose to
model the spatial factors affecting these pathogens because (i)
spatially explicit datasets of their distributions were available (but
were not available for other pathogens or other organisms in gen-
eral; see Methods); (ii) they span a diversity of taxa (a virus, bac-
terium, and fungus) and transmission modes (WNV and Lyme are
mosquito- and tick-borne, respectively, and Bd is a directly trans-
mitted, water-borne pathogen), and infect various types of hosts
(endothermic and ectothermic), increasing the generality of our
findings; (iii) they are widespread generalists throughout the United
States, providing a spatial extent great enough to conduct large-
scale analyses; (iv) their abundances or prevalences appear to be
partially controlled by a common biotic factor, the richness of
potential hosts (19, 21, 23, 24), and by common abiotic factors,
including climate and vegetation (20, 25, 26); and, finally,
(v) understanding emerging diseases is of critical importance to
biodiversity conservation and human health. Our goal was not to
develop and put forth the best possible model to explain the
spread of these diseases but rather to test whether spatial scale
influences which types of ecological processes are important.
Because the abundance of all three pathogens has been shown

previously to be affected by a common biotic factor, the richness
of potential hosts (defined as the richness of all species that
receive either successful or failed transmission attempts from a
generalist pathogen or vector) (19, 21, 23, 24), we chose to use
this factor in our models to represent the subset of biotic inter-
actions that drive the processes causing dilution or amplification
effects (5). We used total amphibian richness to predict the
spread of Bd, avian richness for WNV, and mammalian richness
for Lyme disease (we also initially tested the richness of other
taxa for B. burgdorferi; see Methods). Additionally, for WNV we
also tested models that included mosquito richness given that
many mosquitoes can vector this virus (Supporting Information).
In contrast, Lyme disease in the eastern United States is known
to be vectored by only a single tick species, Ixodes scapularis,

found in every county where thorough sampling has been per-
formed (Supporting Information). Thus, we did not include vector
richness, prevalence, or abundance in our Lyme disease models.
Importantly, because humans generally cannot be infected with
WNV or B. burgdorferi unless they are bitten by an appropriate
vector, modeling the distribution of these pathogens in humans
implicitly integrates the effects of ecological processes on the
pathogen as well as the vector. For our biotic factors, we hy-
pothesized that potential host species richness would have the
highest relative importance at local scales, inhibiting or promoting
pathogen prevalence because of dilution and amplification effects
(a negative or positive association between host richness and in-
fections per host, respectively) (19). In contrast, we predicted that
abiotic factors (climatic variables, altitude, and the normalized
vegetation index; Table S1) would have the highest relative im-
portance at regional scales.
Although biotic and abiotic variables have traditionally been

the central focus of species-distribution models (11, 27), much at-
tention recently has turned toward modeling the importance of
human impacts on species distributions. Human activities can alter
the dispersal of organisms (even for species not expanding their
ranges; see Supporting Information) (25) both by facilitating long-
distance movements of nonnative species (28) and emerging path-
ogens (25, 29) and by impeding spread by reducing habitat con-
nectivity through habitat destruction and the construction of roads,
canals, and buildings (30). Indeed, the distributions of all three
pathogens have been reported to be affected by humans (20, 25,
29). Thus, we used human population density to represent the ways
in which humans can affect pathogen transmission (e.g., through
dispersal). We hypothesized that human impacts might be most
important at regional scales because humans can homogenize bio-
diversity across large spatial scales.

Results and Discussion
For all three parasites, host richness was a statistically significant
predictor of prevalence at local scales when controlling for the
other factors in the model, and its relative importance declined
as spatial scale increased (Fig. 2 and Bd in Table 1 and WNV and
Lyme disease in Table S2). Hence, as hypothesized by several re-
searchers (15, 16), the slope between host richness and prevalence
became shallower as scale increased, suggesting that the controversy
surrounding the relationship between host diversity and parasite
abundance (i.e., the dilution effect) might partly be a product of the

Fig. 1. How does spatial scale affect processes in ecology? Three processes are typically found to control the distribution of organisms: biotic interactions,
environmental filtering, and dispersal. However, the extent to which each of these processes is relevant is expected to vary with spatial scale. The thickness of
the blue bars represents the hypothesized importance of each process at different scales (horizontal axis). Biotic interactions are hypothesized to be im-
portant at local scales, and climate and dispersal are expected to be relevant at larger, regional scales. The question mark denotes that there are no
established hypotheses regarding how scale affects the detection of human population density on distribution patterns. (Adapted from ref. 9.)
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variation in the scales at which studies have been conducted (15,
16). In the multivariate WNV models, mosquito richness was not
predictive of WNV distribution at any scale (Table S3), suggesting
that the richness of hosts is more important than the richness of
vectors in regulating WNV transmission.
Different abiotic factors were important for different host–

parasite systems (see Bd in Table 1 and WNV and Lyme disease
in Table S2). Nevertheless, for all three parasites and when
controlling for the other factors in the model, abiotic factors
were statistically significant and of high relative importance only
at scales larger than those at which biotic factors were important.

Finally, human population density was significantly (negatively)
related to all three parasites at scales much larger than the scales
at which host richness was important (Table 1 and Table S2)—
this generally was at regional spatial scales (∼104–105 km2) but at
intermediate to regional scales (∼103–104 km2) for Lyme disease.
This result was not surprising, because Bd and WNV are found
throughout the United States, whereas Lyme disease is, for the
most part, restricted to a comparatively narrower geographic
range because of habitat requirements (26), limiting the influ-
ence of humans to smaller scales (31). When significant, differ-
ent abiotic factors were generally important at the same scales as
one another (Supporting Information).
Importantly, several supplemental analyses support the ro-

bustness of our results. First, single regions of the country did not
tend to influence the results of our Bd models heavily (Fig. 3),
although we did see some variation in space for WNV and Lyme
models (Fig. S2), possibly because of extreme predictor values
in specific areas (Supporting Information). Second, null model
randomization tests (Supporting Information and ref. 18) con-
firmed that our results were not a statistical artifact of the
structure of the predictor data (Fig. S3). Moreover, our findings
were consistent across a bacterium, virus, and fungus, invasive
(WNV and Bd) and native species, pathogens that infect en-
dothermic and ectothermic hosts, and pathogens that are and
are not transmitted by vectors. Despite the robustness of these
results, they should not be taken to suggest that abiotic factors
or richness cannot predict species distributions at local or re-
gional scales, respectively; rather, they only show that at these
scales these factors are generally less important than the other
factors considered.
We conducted several additional analyses to provide insights

into the statistical and ecological mechanisms for our findings.
Univariate models revealed that biotic factors were significant
only at local scales, climate was generally scale independent, and
human population density was significant only at regional scales,

Fig. 2. Different processes control species distribution at different scales.
Predictors for Bd (A), WNV (B), and Lyme disease (C) varied in their relative
importance scores depending on the spatial scale of analysis (roughly 37–
150,000 km2; horizontal axes). Blue lines represent host richness (a biotic
process), green lines are abiotic factors (importance scores for abiotic factors
that were statistically significant at any scale were averaged), and orange
lines are human population density, a proxy for anthropogenic influences on
organisms (e.g., effects on dispersal). Points with black circles indicate sig-
nificance (P < 0.05) of a process at a given scale; gray points indicate sig-
nificance for some but not all abiotic factors.

Table 1. Results of multimodel inference analyses predicting
the prevalence of Bd

Scale/predictor Estimate SE P value

0.0625 degree
Intercept 0.599 0.025 <0.001
Richness −0.164 0.028 <0.001
Factor one −0.011 0.020 0.575
Factor two −0.021 0.029 0.470
Factor three 0.019 0.025 0.450
Population 0.002 0.010 0.782

0.5 degree
Intercept 0.060 0.026 <0.001
Richness −0.021 0.049 0.646
Factor one −0.083 0.031 0.008
Factor two −0.095 0.033 0.004
Factor three 0.070 0.033 0.035
Population 0.002 0.002 0.993

4 degrees
Intercept 0.587 0.021 <0.001
Richness −0.002 0.015 0.928
Factor one −0.005 0.015 0.720
Factor two −0.006 0.017 0.739
Factor three 0.013 0.028 0.646
Population −0.177 0.034 <0.001

Models used host richness, three abiotic factors, and human popu-
lation density as predictors in the analysis. The scales shown are the
smallest, intermediate, and largest scales used. See the legend of Table S1
for interpretation of the factors and Table S2 for results for WNV and
Borrelia burgdorferi. Statistically significant (P < 0.05) predictors are
in bold.
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providing a statistical explanation for the pattern observed in
relative importance scores (Supporting Information and Fig. S4).
Correlograms of spatial autocorrelation revealed that biotic
factors varied most at local scales, whereas climatic factors varied
more at regional scales (Supporting Information and Fig. S5).
These results support the traditionally hypothesized ecological
mechanism for scale-dependent variation in the importance of
biotic and abiotic variables: Factors should be most important at
the scales at which they vary the most, because it will be difficult
to find a statistically significant correlation when independent
variables have low variance (8).
Intermediate scales are commonly used in an attempt to

minimize scale effects by accounting for both ends of the scale
spectrum (8, 18), with the assumption that significant processes
at either small or large scales will also be detectable along the
spectrum. However, in our analyses, host species richness was
never significant at the same scale as abiotic factors or human
population density. Therefore, our results add to existing evi-
dence (discussed in ref. 18) that rarely is there a single scale at
which all three processes are important. Rather, our results
support domains or sections of the scale spectrum at which
processes operate stably (independent of scale), separated by
abrupt transitional regions in which variables rapidly gain or lose
importance. For instance, for all three parasites, host richness
was relatively important below 150 km2, declined abruptly in
importance thereafter, and remained unimportant at all higher
spatial scales (Fig. 2). Identifying domains could improve pre-
dictions and management at untested scales and simplify the
selection of scales for future analyses (8).
One of the most important challenges in ecology is to de-

termine what dictates the abundance and distribution of species.
Here we show that biotic factors vary most and seem to drive
distributional patterns at more local scales, whereas abiotic factors
vary most and seem to drive patterns at regional scales, providing
support for a long-held but undertested hypothesis in spatial ecol-
ogy. Importantly, multiple regression models at a single scale almost

always would have shown only one ecological process to be im-
portant, erroneously implying that the others were of low relevance.
As humans continue to modify species composition, dispersal, and
climate across scales, it is critical that we understand the full spec-
trum of consequences of these changes. Without thorough multi-
scale analyses, scientists are likely to misestimate the impacts of
anthropogenic modifications on biodiversity and the environment.

Methods
Predictor Data. We used the total species richness of amphibians, birds, and
mammals to predict the distribution of Bd, WNV, and B. burgdorferi, re-
spectively. Richness of potential hosts was used instead of richness of known
hosts because noncompetent hosts can dilute pathogen prevalence in the
area by wasting bites from a vector or infection attempts from a parasite,
resulting in failed transmission events. Geographic ranges for all species
within each taxon were downloaded from the International Union for the
Conservation of Nature Red List website (www.iucnredlist.org) as polygons
and were used to create richness rasters (Supporting Information). We
considered using the richness of birds and reptiles to predict the distribution
of Lyme disease as well, but these factors were not significant in preliminary
models. We used a human population density grid from the Center for In-
ternational Earth Science Information Network’s Global Rural-Urban Map-
ping Project (GRUMPv1). We log-transformed population data because they
were right-skewed. Rasters containing data for the following abiotic vari-
ables were downloaded from WorldClim (www.worldclim.org): 50-y means
of precipitation; mean, minimum, and maximum monthly temperatures;
diurnal temperature range; annual temperature range; and altitude. We
also collected the average monthly Normalized Difference Vegetation Index
(NDVI) data from the National Oceanic and Atmospheric Administration
(www.ospo.noaa.gov/Products/land/gvi/NDVI.html). We reduced our eight
abiotic variables to three (>90% of the total variation) using a factor analysis
(factanal function in statistics package, R 3.0.1, fitting four factors; Table S1).
Factor one was heavily influenced by mean, minimum, and maximum tem-
peratures. Factor two was primarily based on precipitation and the NDVI.
Factor three consisted mainly of temperature variability (diurnal tempera-
ture range) and altitude data. Given that Bd is a freshwater pathogen and
mosquitos require freshwater to breed, we also tested whether water as
a fraction of land cover was predictive of these two pathogens. It was not
a significant positive predictor in preliminary models and thus was not

Fig. 3. Generality of scale-dependent processes in space. The maps indicate the contribution of each of three processes as predictors of Bd distribution in
models. Points represent physical locations with Bd prevalence data and are colored based on the magnitude of the change in their residual after the given
process was added to a model predicting Bd distribution. Blue, white, and red points indicate the process decreased, had no effect, or increased the mag-
nitude of the residuals, respectively. Maps with many colored points indicate that a given process was highly important at a given scale; maps with mostly
white points signify that it was unimportant. See Fig. S2 for equivalent maps for WNV and Lyme disease.
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included in our final models (see Supporting Information for additional de-
tails). In addition, we tested whether species richness for vectors (mosquitos)
was predictive of WNV prevalence (Supporting Information). We chose not
to examine the temporal dispersal of the pathogens because temporal res-
olution was insufficient for a robust examination of temporal dynamics.

Creation of Rasters at Multiple Scales. All Geographic Information Systems
data processing was done using the raster package in R v. 3.0.1 unless oth-
erwise indicated. To produce rasters at each of our targeted resolutions, we
first masked, or cropped, rasters to the United States or the eastern United
States (mask function, raster package), depending on the pathogen, as
discussed below. The smallest scale we could achieve with all available
predictors was 0.0625 × 0.0625 degree (∼37 km2), so we adjusted all rasters
up to this size and removed any geographic projections (aggregate and
projectRaster functions, raster package). This scale served as the smallest in
our analyses. From there, we up-scaled rasters (aggregate function) to take the
mean (abiotic factors and human density) or sum of unique values (richness) of
each 2 × 2 group of cells in the smaller scale, forming one new cell at the larger
scale and quadrupling the area at each step. This process was repeated six times
until we had rasters with cell sizes of 4 × 4 degrees (∼1.5 × 105 km2).

Species ranges were clipped (i.e., cropped using the clip function, raster
package) to the border of the United States or eastern United States using
ArcMap 10.2 and were converted from spatial polygons to rasters in R (SI
Methods). All predictors were again standardized via conversion to z-scores
so that predictors had a mean of zero and SD of one at every scale. See Table
S4 for correlations between predictors at all scales.

Parasite Data.OnMarch 21, 2014 we downloaded a compilation of spatially
explicit chytrid data from Bd Maps (www.bd-maps.net) containing records
obtained by swabbing animals for infection in the field. We calculated
arcsine-transformed prevalence at each location where amphibians were
tested. We obtained WNV and B. burgdorferi data through the county-
level disease monitoring program (diseasemaps.usgs.gov) of the Centers
for Disease Control and Prevention (CDC). Total human cases were aver-
aged across years for B. burgdorferi (1992–2011) and WNV (2001–2012
beginning with the first year in which cases were reported in a particular
county to account for the rapid spread) and were adjusted to prevalence
per 10,000 people using 2010 US county-level census data (www.census.
gov). If we did not adjust the Lyme and WNV data by population density,
the distribution simply would match the human population distribution.
Any significant effects of human population density for these pathogens
thus indicate that the effect of humans is greater or less than a linear
proportional function. To produce spatial points for our analysis, we
converted the centroid of each county to a point containing that county’s
data (gCentroid function, rgeos package). However, because counties in
the western United States often were larger than the cells in our fine-
grain rasters (∼37 km2), we limited our analysis of these two pathogens to
the states east of the Mississippi River (Fig. S2). All response data were
in the form of spatial points. We attempted to find spatially explicit
prevalence data for other pathogens as well, but could not (Supporting
Information).

Generalized Least Squares Models. We fit generalized least squared (GLS)
multiple regression models (gls function, nlme package, full maximum
likelihood fit, accounting for spatial autocorrelation using corExp function)
(32) using extracted values (extract function, raster package) of the five

continuous predictors (pathogen-specific host richness, population density,
and three abiotic factors) for each pathogen data point in space. We did not
test for interactions between predictors, as explained in Supporting In-
formation. GLS models were fit for the same response data at every scale for
each pathogen by using predictors generated for that scale.

Multimodel Inference. We did not want to rely on any single model for our
conclusions. Therefore we used multimodel inference (MuMIn package), a
procedure that fits models using all possible combinations of predictors and
weights them by Akaike Information Criterion (AIC) (dredge function). This
procedure entailed generating AIC values and Akaike weights for each
candidate model (which were limited to three predictors or less). We then
computed relative importance scores by summing the Akaike weights of all of
the models in which each predictor appeared (33, 34). Next, we computed
model-averaged parameter estimates with and without shrinkage using all
possible models. We considered all possible models with three or fewer
predictors because models with large ΔAIC contribute extremely little to the
model-averaged parameter estimate because they have very small Akaike
weights (33, 34) and because models with four or all five predictors would
have overwhelmed the averaged models and swamped out relative
importance scores.

Randomization Tests. We tested whether the observed changes in the im-
portance of biotic, abiotic, and human density variables across scales were
spuriously driven by correlations among these predictors using a randomi-
zation test (500 iterations). For each iteration, we randomly reshuffled chytrid
prevalence data among the observations (thus preserving the correlation
structure of the predictors) and repeated our statistical analysis.

Univariate Models. For all pathogens, we ran univariate GLSmodels with every
predictor at each scale to test whether predictors changed in importance
across scales (in multivariate models) on their own or because of changes in
importance for other predictors.

Spatial Correlograms. To test the hypothesis that biotic factors were more
variable at smaller scales than climate factors, we created correlograms
[Moran’s I vs. distance plots; ncf package, correlog function; 0.0625° scale
(∼37 km2)] to evaluate spatial autocorrelation as a function of distance, with
the expectation that at small scales biotic factors would have smaller Mor-
an’s I values than climatic factors.

The root mean square errors (RMSE) for the model-averaged predictions
for each parasite at each scale are shown in Table S5. The lists of models
incorporated into each averaged model, along with their respective weights,
are presented in Table S6. In addition, we have presented model averaged
outputs without shrinkage in Table S7.
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SI Discussion
Human-Assisted Dispersal.Humans may have a variety of effects on
the distribution of organisms, including effects on their dispersal.
Dispersal is an important factor controlling species distributions
even when those distributions appear stable, because species are
always in dynamic disequilibrium (35). For example, continuous
disturbances to the landscape, community composition, or mi-
croclimate caused by humans can result in perpetual mismatches
between a species’ current and potential distribution (36).
Therefore, we tested whether human population density af-
fected the distributions of Bd, WNV, and Lyme disease despite
controversy surrounding whether their ranges are expanding or
are stable.

Heterogeneity of Residuals in Space. In the Bd models, at the scales
in which predictors in our models influenced the residuals, re-
siduals were mostly altered homogenously in space (Fig. 3).
However, spatial heterogeneity among residuals was observed in
the WNV and Lyme models (Fig. S2). Very high or low residuals
may be observed at the highest or lowest latitudes on abiotic maps
because predictors may act most strongly where they are most
limiting to disease ranges. Alternatively, the residuals may be high
in these areas because the underlying predictor values are more
extreme. For example, Florida often has high residuals on the
abiotic maps because it has very high temperatures. In addition,
clustering of similar residuals may be especially profound in human
population density maps because of extreme human density values.
Finally, our models generally did a poor job in predicting the in-
cidence of Lyme disease in Wisconsin, which has a very high in-
cidence of this disease.

Consideration of Vectors. It is important to consider the conditions
favoring the vector when attempting to understand the dis-
tribution of a vector-borne pathogen. We considered adding
information about the vectors as predictors into our primary
statistical analyses of WNV and Lyme disease but chose not to do
so for several reasons. First, our analyses already consider vectors
implicitly, because our response data are human disease cases.
Humans cannot be infected unless they are bitten by the ap-
propriate vector, and thus the distribution of the pathogen in
humans importantly integrates the effects of abiotic, biotic, and
propagule pressure factors on the pathogen, intermediate hosts,
and the vectors. Therefore, the conditions that can support dis-
ease already reflect those that can support the pathogen, vector,
and host, and it should not be necessary to examine the vector
independently.
Nevertheless, we did consider the possibility that accounting for

the vector distribution could reduce the amount of error variance
and thus increase our statistical power to detect the effects of
interest. We obtained geographic distribution maps for the
vectors of WNV (Culex sp. and other mosquito species) (37) and
Lyme disease (Ixodes scapularis) (CDC), but these maps showed
that these vectors are spread throughout the entire spatial extent
of our statistical analyses (the United States east of the Mis-
sissippi river). Thus, we could not use the presence/absence of
the vector as a predictor in our models, because the range maps
for the primary vectors showed no variation in presence/absence
of these vectors among the counties in the eastern United States.
However, we collected presence/absence maps of individual
mosquito species (VectorMaps, ref. 32), generated vector rich-
ness rasters for the eastern United States, and included these
rasters in preliminary WNV models; this predictor was not sig-

nificant at any scale. Additionally, we included the abundance
of bodies of water in our model for WNV because mosqui-
toes require water to breed; including these data did not change
our results.
Importantly, many studies do not include every possible vari-

able that affects disease, and the not including a predictor can
present a third-variable problem. That is, a researcher could
conclude that a relationship is causal when in fact the correlated
third variable that was not included is the real causal factor.
However, we are not suggesting that each of the variables we
tested is the cause of a change in the focal disease. Rather, we are
suggesting that biotic factors in general (whether or not they are
truly causal) are more predictive on small scales and that abiotic
factors (whether or not they are truly causal) are more predictive
at larger scales. That we consider vectors implicitly rather than
explicitly should in no way invalidate this general conclusion. For
all of the reasons above, we decided against explicitly in-
corporating vector presence, abundance, or suitability into our
models; however, to reiterate, the vector still is included indirectly
or implicitly as component of our models.

Consideration of Interactions Between Predictors. We chose not to
test for interactions between vectors for several reasons, some of
which are explained in the main text; the other explanations
provided here. (i) Interactions cannot be classified as biotic
predictors, abiotic predictors, or human population effects because
they always would have predictors from at least two of these cate-
gories. Hence, because they cannot be categorized according to the
focal hypothesis of our paper, they prevent us from addressing the
main goal of the paper, to test whether biotic and abiotic predictors
are relatively important at the same or at differing spatial scales.
(ii) We lack any a priori hypotheses regarding the spatial scales at
which interactions may be relevant, or even which interactions may
be important. (iii) Conducting a single analysis on one parasite across
all seven scales, controlling for spatial auto-correlation with multi-
model inference and limiting the model to only three predictors or
fewer, takes approximately 1 wk. Adding in interactions increases
the number of models exponentially, would require us to consider
models with more than three predictors (because a single two-way
interaction alone requires three variables because the two main
effects must be included), and thus quickly makes the analyses in-
tractable. With five predictors, there would be 32 possible interac-
tions per model, resulting in hundreds of millions of possible models
for MuMIn to evaluate per parasite per scale. Even on a super
computer, this computation currently would present an intractable
problem. (iv) Finally, this exercise is not an attempt to generate a
model that maximizes our ability to predict prevalence. That model
would require considering interactions and other candidate vari-
ables. Our goal was to assess whether the importance of classes of
predictors varies across spatial scales in a consistent and predictable
manner across different types of host–parasite systems. We are not
downplaying the importance of interaction or of improving the fit
of statistical models. Indeed, interactions might be very important
and also might depend on scale. However, these considerations are
not crucial to our hypotheses and, just as, until recently, computing
limitations at least partially prevented researchers from testing
many scales hypotheses, computing limitations still make it chal-
lenging to consider interactions across scales thoroughly when
spatial autocorrelation and multimodel inference approaches
are used.
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SI Assessing Model Predictability.We computed the RMSE for the
model-averaged predictions for each parasite at each scale
(Table S5). The RMSE is a well-established criterion for eval-
uating predictive capability, and it has several advantages for our
analysis. First, it allows us to compare the predictive performance
for each parasite across each scale. Second, it retains a valid in-
terpretation for models that incorporate spatial autocorrelation,
unlike R2 or pseudoR2 values. Third, it can be computed from our
completed analysis, rather than via resampling analyses, which we
found would take months. Last, it has a simple interpretation: It
represents the mean deviation between the observed and predicted
values, so smaller values indicate better overall performance.
Analyses based on RMSE can indicate whether our predictions
changed in accuracy across scales, contributing to our understanding
about working with data across spatial scales in ecology.

SI Methods
Conversion of Species Range Polygons to Richness Rasters.We could
not convert polygons directly to rasters while calculating the
number of unique host species per cell because the rasterize
function counts a polygon as being present in a cell only when it
passes through the center of the cell rather than when it overlaps
any part of the cell. In many studies, failing to calculate unique
species per cell accurately may not be an issue, but it would have
prevented us from obtaining equally reliable richness estimates
across scales because host geographic ranges are less likely to cross
the center of a cell when the cells are larger. To work around this
problem, we converted the geographic range of each individual host
species to a raster (rasterize function) and then converted the raster
to spatial points (rasterToPoints function). Points for all species
within a taxon (i.e., amphibians) then were combined into one
dataset and combined with a blank raster template to create one
raster (rasterize function) at each of our scales. This process was
repeated for each taxon. For unknown reasons, some small, relatively
isolated areas had extremely low polygon coverage (such as Long
Island for bird polygons), so richness values in these areas were
adjusted to the general minimum in areas with proper coverage.

Pathogen-Specific Abiotic Predictors. In addition to the eight gen-
eral abiotic variables summarized into factors, we also tested
whether water as a fraction of land cover predicted Bd and WNV
prevalence, hypothesizing that water cover may promote Bd and
mosquito abundance. We downloaded 2011 edition land cover
rasters from the National Land Cover Database (www.mrlc.gov/
nlcd2011.php) and masked them to the United States or to the
eastern United States for Bd and WNV, respectively. We catego-
rized raster values as either land or freshwater and then aggregated
the values into cell sizes based on our seven scales as outlined in
Methods. The percent of wetland cover was used as a predictor in
trial models alongside the three other abiotic factors, richness, and
human population density. Because this variable was not a signifi-
cant positive predictor of WNV or Bd distribution at any scale, we
did not include it in any reported models.

Vector Richness. We collected range maps for individual mosquito
species from VectorMaps (vectormap.si.edu/Mosquito_Metadata.
htm) as rasters. Rasters were adjusted to have a common projection
(projectRaster function, raster package) and spatial extent (extent
function) and were overlaid (summed) to generate counts of species
across space. Rasters then were upscaled and standardized as done
in generating other richness rasters. We included mosquito richness
rasters in preliminary multivariate GLS and MuMIn models along
with our other predictors and found that they were never significant
at any scale (Table S3), so we did not include this predictor in the
models reported in the main text.

Other Diseases or Pathogens.We attempted to find spatially explicit
occurrence data for other widespread diseases, including rabies

and avian malaria. Although rabies data are collected and main-
tained by the CDC, it is not freely provided and can be obtained by
only contacting each individual state.Unfortunately, only a few states
agreed to provide us with these data, preventing us from obtaining a
spatial extent large enough to test our hypotheses across a scale
gradient. MalAvi (mbio-serv2.mbioekol.lu.se/Malavi/), the largest
database of avian malaria occurrence in the world, has a few dozen
records in the United States at only a handful of locations, so we
could not examine the distribution of this disease either. We found
no other spatially explicit disease databases of sufficient extent to
test our hypotheses.

Correlations Between Predictors. We tested for bivariate correla-
tions among the predictors using the cor function in the stats
package of R statistical software.

SI Results
Randomization Tests. When the response data were randomized,
none of the predictors was significant at any scale, and all im-
portance scores were small and equivalent across scales (Fig. S3).
Thus, our results are not driven by unknown statistical artifacts but
rather appear to be a function of variation in spatially dependent
ecological processes that dictate species distributions (see ref. 18 for
another example of a scale-dependent–null model).

Univariate Models.Effects of human population and richness were
consistent with the results of multivariate models. For all three
diseases, the magnitude of coefficient for richness peaked at the
smallest scale, and the coefficient for human population peaked
at the largest scale (Fig. S4). Therefore, richness and human
population were important at these scales in the multimodel
inferences because they became better predictors on their own.
The abiotic factor coefficients were mostly consistent across
scales (although they peaked at large scales for Lyme disease;
Fig. S4), suggesting that their high relative importance at mod-
erate to larger scales may have been a result of the changing
significance of the other predictors.

Spatial Correlograms. Although the univariate models provide a
statistical mechanism for our results, the spatial correlograms
provide an ecological mechanism for our results. Traditionally,
researchers hypothesized that variables should be important at
the scales at which they vary the most. That is, biotic factors
should be important at small scales, and abiotic factors should be
important at larger scales because each of these factors is thought
to be more variable at these scales. To test this hypothesis, we
focused on WNV and Lyme because we had prevalence data
evenly distributed across the entire extent of the eastern United
States (i.e., for every county), whereas the data for Bd were highly
clumped, making it challenging to obtain reliable estimates of
autocorrelation. Autocorrelation among host richness predictors
for both WNV and Lyme decreased quickly, reaching zero within
approximately 1 degree (Fig. S5). In contrast, factor one (rep-
resenting mostly temperature), the abiotic factor consistently rele-
vant in our relative importance results, remained autocorrelated for
2 to 4 degrees (Fig. S5). Hence, as predicted, the correlograms
demonstrate that richness was more variable (low autocorrelation)
than climate at small scales and that abiotic factors became variable
(high autocorrelation) only large scales, consistent with the hy-
pothesis that variables should be relatively important at the scales at
which they vary the most.
Predictions for scale-dependent dispersal limitations always

have been less certain than scale-dependent predictions for biotic
and abiotic factors; moreover, our proxy for dispersal limitations,
human population density, does not capture dispersal only,
making the findings for human population density more difficult
to interpret. Nevertheless, human population density became
uncorrelated within 0.50 degrees of distance (Fig. S5).
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Correlations Between Predictors. Predictors were not highly cor-
related to one another at any scale, although for some diseases
there was moderate correlation between richness and some
abiotic factors (Table S4); however, this correlation is expected,
given that richness decreases from tropical to temperate zones.
O’Brien et al. (38) and several other authors emphasize that the
rule of thumb for multicollinearity between two variables is an
r2 ≥ 0.9 (or r ≥ 0.949), and even then they discourage researchers
from eliminating or consolidating variables. The precision of
parameter estimates is extremely robust to correlations less
than 0.9. Our highest correlation coefficients were nowhere
near these thresholds. Finally, our approach of model-averaged
parameter estimation has been shown to reduce the variance-
inflating effects of collinearity among predictors, especially
when all predictors do not have strong effects simultaneously or
correlations are not extreme.

Assessment of Model Error. We found that RMSE did not vary
substantially across scales for any disease (Table S5), suggesting
that changing the scale of our analysis did not affect overall
predictive power but only affected which predictors were in-
fluential. Additionally, the raw and standardized RMSE values
in Table S5 are quite small for both B. burgdorferi and WNV
(<0.038 for standardized RMSE), the two parasites for which we
had the greatest amount and coverage of data (data for every
county across the United States). Hence, the deviations between

the predicted and observed values were small for these models,
indicating that the models were good fits to the data. Not sur-
prisingly, the RMSE values for Bd are higher, presumably be-
cause of fewer data and worse spatial coverage for Bd than for
B. burgdorferi and WNV. However, even the RMSE values for Bd
are relatively small (<0.271 for standardized RMSE), indicating
that the deviations between the predicted and observed values
were not very substantial and that the model was a reasonable fit
to the data. We emphasize that we obtained relatively good fits
despite intentionally (i) not testing for interactions that could
improve model fits (as explained above) and (ii) not considering
predictor variables exhaustively.

Model Averaging. The lists of models incorporated into each av-
eraged model, along with their respective weights, are presented
in Table S6. In addition, we have presented model averaged
outputs without shrinkage in Table S7. However, we caution that
parameter estimates with shrinkage are most appropriate. In mul-
tiple regression analyses, estimates with shrinkage are preferable
because they reduce model selection bias (33, 34). By definition,
shrinkage acknowledges that the absence of a predictor in a model
implies that its coefficient is zero. By including these zeros in the
model-averaging process, shrinkage reduces the upward bias that
can be caused by using only a single (or few) top model(s), and it
drastically reduces the chance of type I error.

Fig. S1. Rasters of varying grain sizes were used in models. Shown are sample rasters of amphibian richness across scales with the following grain (cell) sizes:
(A) 0.0625 × 0.0625 degree; (B) 0.25 × 0.25 degree; (C) 1 × 1 degree; (D) 4 × 4 degrees. Green cells represent high richness, yellow indicates moderately high
richness, orange indicates moderately low richness, and white indicates low richness. Amphibian richness was used as a predictor in our Bdmodels. Rasters were
scaled up by taking the mean of the values in 2 × 2 grids of cells.

Cohen et al. www.pnas.org/cgi/content/short/1521657113 3 of 15

www.pnas.org/cgi/content/short/1521657113


Fig. S2. Generality of scale-dependent processes in space. As in Fig. 3, maps depict the contribution of processes at varying spatial scales to models predicting
county-level Borrelia burgdorferi (A) and WNV (B) data. The counties are colored based on the change in their residuals after the given process was added to a
model predicting parasite distribution. In blue counties the magnitude of the residuals was decreased (the change helped the model); in red counties the
magnitude of the residuals increased them (the change hurt the model); in white counties the change did not affect the model. The color strength indicates the
magnitude of the change in residual. Maps with many colored counties represent scales at which a given process was highly important; maps with mostly white
counties signify that a process was not relevant at a given scale.
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Fig. S3. Null-model randomizations. Results of the randomization procedures conducted on Bd prevalence data. Predictors were randomized 500 times. The
average MuMIn relative importance score after 500 iterations is shown on the y axis, and scale is on the x axis. Blue represents richness, green is the average of
the abiotic factors, and human population density (a potential proxy of dispersal) is shown in orange. None of the points is statistically significant, but im-
portances are nonzero because their values are relative to the other predictors. Because no predictor was ever significant during the randomizations, we did
not run randomization models with response data from the other two diseases.
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Fig. S4. Results of univariate GLS models. The absolute value of the coefficient (±SE) is given at each scale for all three diseases. Blue points and lines represent
the coefficients for host richness, orange points and lines represent human population density, and green points and lines represent abiotic factor one (mainly
consisting of mean, minimum, and maximum temperature), the factor significant in most of the multivariate models. These patterns are mostly consistent with
those observed in the multivariate analyses; the coefficient for host richness is always largest at the smallest scale, and human population always peaks at the
largest scale, suggesting that these predictors were important at these scales because they were truly the best predictors. Conversely, the abiotic factor co-
efficient mostly remains constant (except for Lyme disease), so the observed importance of abiotic factors at moderate to large scales in multivariate models
may have been influenced by the significance of the other variables.
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Fig. S5. Spatial correlograms. Correlograms of spatial autocorrelation (Moran’s I) as a function of distance (degrees) for host richness, abiotic factor one
(mainly representing temperature), and human population data used in the GLS models. Autocorrelations for Bd predictors should be interpreted with caution
because geographic points were not evenly distributed in space. Human population was moderately autocorrelated at first but quickly became uncorrelated at
short distances. Although host richness was initially highly autocorrelated, within about a degree it became uncorrelated (except for Bd). Factor one, which
was the most commonly significant factor in our models, remained autocorrelated for long distances. These correlograms suggest that richness is highly
variable (low autocorrelation) at smaller scales, whereas abiotic factors remain nonvariable (autocorrelated), possibly providing an ecological explanation for
our model results.

Table S1. Loadings from a factor analysis of eight abiotic
variables: mean, minimum, and maximum monthly temperature,
precipitation, diurnal temperature range, annual temperature
range, altitude, and NDVI and associated variation accounted for
by each factor

Variable
Factor
one

Factor
two

Factor
three

Factor
four

Altitude −0.478 −0.372 0.674 0.335
Annual temperature

variation
−0.449 −0.442 0.072 −0.640

Diurnal temperature
variation

0.075 −0.376 0.909 −0.149

NDVI 0.085 0.900 −0.246 0.079
Precipitation 0.158 0.773 −0.423 0.194
Mean temperature 0.984 0.114 −0.076 0.107
Maximum temperature 0.990 0.039 0.103 0.077
Minimum temperature 0.941 0.183 −0.248 0.133
SS loadings 3.302 1.931 1.603 0.623
Proportion variation 0.413 0.241 0.200 0.078
Cumulative variation 0.413 0.654 0.855 0.932

Variables were condensed into four factors. Factors one–three were used
to predict the distribution of all three diseases across scales. Factor one was
highly correlated with temperature, factor two represents NDVI and pre-
cipitation, and factor three correlated with temperature variability and al-
titude. Scores shown are from a factor analysis of climate variables across the
extent of the United States used to predict the spread of Bd. However, the
factor analysis performed for WNV and Lyme disease using only climate data
in the eastern United States produced nearly identical factors, each repre-
senting the same abiotic variables.
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Table S2. Results of multimodel inference analyses (with
shrinkage) predicting the prevalence of WNV and Borrelia
burgdorferi

Predictor Coefficient SE Z value Pr(>jzj)
WNV

0.0625 degree
Intercept 0.0060 0.0006 10.13 <0.001
Richness 0.0018 0.0009 2.04 0.042
Factor one 0.0006 0.0008 0.80 0.422
Factor two 0.0011 0.0007 1.51 0.132
Factor three 0.0001 0.0004 0.30 0.765
Population <0.0001 0.0002 0.21 0.831

0.125 degree
Intercept 0.0060 0.0006 10.30 <0.001
Richness 0.0014 0.0010 1.32 0.189
Factor one 0.0008 0.0008 0.96 0.338
Factor two 0.0011 0.0007 1.46 0.144
Factor three 0.0004 0.0007 0.56 0.574
Population ≤0.0001 0.0002 0.22 0.829

0.25 degree
Intercept 0.0060 0.0006 10.45 <0.001
Richness 0.0010 0.0011 0.89 0.372
Factor one 0.0009 0.0009 1.00 0.315
Factor two 0.0010 0.0008 1.20 0.231
Factor three 0.0007 0.0009 0.83 0.407
Population −0.0005 0.0006 0.75 0.456

0.5 degree
Intercept 0.0062 0.0006 10.50 <0.001
Richness 0.0001 0.0005 0.24 0.808
Factor one 0.0016 0.0008 2.03 0.043
Factor two 0.0004 0.0006 0.66 0.507
Factor three 0.0009 0.0008 1.08 0.279
Population −0.0009 0.0008 1.08 0.280

1 degree
Intercept 0.0062 0.0006 10.56 <0.001
Richness ≤0.0001 0.0003 0.17 0.986
Factor one 0.0019 0.0007 2.64 0.008
Factor two 0.0002 0.0004 0.40 0.688
Factor three 0.0004 0.0006 0.59 0.554
Population −0.0011 0.0009 1.29 0.196

2 degrees
Intercept 0.0066 0.0006 10.50 <0.001
Richness 0.0001 0.0004 0.26 0.794
Factor one 0.0019 0.0007 2.60 0.009
Factor two <0.0001 0.0004 0.26 0.797
Factor three 0.0003 0.0006 0.46 0.645
Population −0.0020 0.0009 2.16 0.031

4 degrees
Intercept 0.0067 0.0007 9.08 <0.001
Richness 0.0005 0.0009 0.57 0.567
Factor one 0.0012 0.0009 1.31 0.190
Factor two 0.0002 0.0006 0.37 0.712
Factor three 0.0010 0.0012 0.85 0.398
Population −0.0021 0.0013 1.53 0.127

Lyme disease
0.0625 degree

Intercept 2.848 1.143 2.49 0.013
Richness 0.815 0.344 2.37 0.018
Factor one −0.844 0.725 1.16 0.245
Factor two 0.246 0.376 0.65 0.513
Factor three 0.010 0.115 0.09 0.929
Population −0.193 0.132 1.46 0.145

0.125 degree
Intercept 8.533 11.463 0.74 0.457
Richness 0.625 0.437 1.43 0.153
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Table S2. Cont.

Predictor Coefficient SE Z value Pr(>jzj)
Factor one −1.043 0.888 1.17 0.240
Factor two 0.109 0.301 0.36 0.716
Factor three 0.096 0.252 0.38 0.703
Population −0.409 0.132 3.08 0.002

0.25 degree
Intercept 6.884 9.434 0.73 0.466
Richness 0.120 0.256 0.47 0.638
Factor one −0.366 0.723 0.51 0.613
Factor two 0.002 0.267 0.01 0.995
Factor three 0.188 0.295 0.64 0.524
Population −0.648 0.161 4.03 <0.001

0.5 degree
Intercept 6.572 8.913 0.74 0.461
Richness 0.016 0.147 0.11 0.916
Factor one −0.192 0.635 0.30 0.762
Factor two −0.035 0.248 0.14 0.889
Factor three 0.287 0.340 0.84 0.399
Population −0.529 0.278 1.90 0.058

1 degree
Intercept 6.253 8.103 0.77 0.441
Richness −0.141 0.261 0.54 0.590
Factor one 0.260 0.587 0.44 0.658
Factor two −0.169 0.309 0.55 0.585
Factor three 0.009 0.177 0.05 0.959
Population −0.144 0.260 0.56 0.578

2 degrees
Intercept 4.467 6.550 0.68 0.496
Richness −0.013 0.177 0.08 0.940
Factor one 0.552 0.864 0.64 0.523
Factor two −1.412 0.553 2.70 0.007
Factor three 0.006 0.149 0.04 0.969
Population −0.770 0.526 1.46 0.143

4 degrees
Intercept 5.803 7.657 0.76 0.449
Richness 0.082 0.323 0.54 0.588
Factor one 1.478 0.901 2.43 0.015
Factor two −0.893 0.602 2.28 0.023
Factor three 0.004 0.208 0.05 0.961
Population 0.131 0.358 0.92 0.360

Models used host richness, three abiotic factors, and human population
density in the analysis. Statistically significant (P < 0.05) values are in bold.

Table S3. Effect of mosquito richness on WNV distribution
across scales

Scale in degrees2 Estimate SE Adjusted SE Z value Pr(>jzj)
0.0625 −2.92E-04 7.328E-04 7.33E-04 0.398 0.6905
0.125 −2.87E-04 7.723E-04 7.73E-04 0.372 0.710
0.25 −3.79E-05 4.128E-04 4.13E-04 0.092 0.927
0.5 1.713E-05 3.919E-04 3.92E-04 0.044 0.9652
1 2.833E-05 3.645E-04 3.65E-04 0.078 0.938
2 −1.97E-05 3.769E-04 3.77E-04 0.052 0.9584
4 −0.00025 0.0010168 0.001017 0.243 0.808
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Table S4. Correlations between predictors across spatial scales

Factor one Factor two Factor three Richness Population

Bd
0.0625 degree2

Factor one 1 0.369 −0.029 0.664 0.432
Factor two 0.369 1 0.146 0.494 0.153
Factor three −0.029 0.146 1 −0.304 −0.421
Richness 0.664 0.494 −0.304 1 0.409
Population 0.432 0.152 −0.421 0.409 1

0.125 degree2

Factor one 1 0.361 −0.039 0.663 0.451
Factor two 0.361 1 0.116 0.497 0.207
Factor three −0.039 0.116 1 −0.318 −0.468
Richness 0.663 0.497 −0.318 1 0.460
Population 0.451 0.207 −0.468 0.460 1

0.25 degree2

Factor one 1 0.345 −0.052 0.669 0.476
Factor two 0.345 1 0.075 0.506 0.231
Factor three −0.052 0.075 1 −0.328 −0.514
Richness 0.669 0.506 −0.328 1 0.524
Population 0.476 0.231 −0.514 0.524 1

0.5 degree2

Factor one 1 0.335 −0.066 0.674 0.511
Factor two 0.335 1 0.037 0.523 0.290
Factor three −0.066 0.037 1 −0.324 −0.586
Richness 0.674 0.523 −0.324 1 0.599
Population 0.511 0.290 −0.586 0.599 1

1 degree2

Factor one 1 0.313 −0.093 0.660 0.510
Factor two 0.313 1 −0.062 0.493 0.362
Factor three −0.093 −0.062 1 −0.330 −0.584
Richness 0.660 0.493 −0.330 1 0.632
Population 0.510 0.362 −0.584 0.632 1

2 degrees2

Factor one 1 0.207 −0.168 0.693 0.498
Factor two 0.207 1 −0.157 0.478 0.371
Factor three −0.168 −0.157 1 −0.358 −0.621
Richness 0.693 0.478 −0.358 1 0.673
Population 0.498 0.371 −0.621 0.673 1

4 degrees2

Factor one 1 0.097 −0.227 0.638 0.518
Factor two 0.097 1 −0.257 0.484 0.437
Factor three −0.227 −0.257 1 −0.422 −0.721
Richness 0.638 0.483 −0.422 1 0.743
Population 0.518 0.437 −0.721 0.743 1

WNV
0.0625 degree2

Factor one 1 0.042 −0.004 0.332 0.025
Factor two 0.042 1 −0.118 −0.404 −0.211
Factor three −0.004 −0.118 1 0.524 0.111
Richness 0.332 −0.404 0.524 1 0.074
Population 0.025 −0.211 0.111 0.074 1

0.125 degree2

Factor one 1 0.035 −0.002 0.333 0.018
Factor two 0.035 1 −0.128 −0.433 −0.271
Factor three −0.002 −0.128 1 0.517 0.117
Richness 0.333 −0.433 0.517 1 0.112
Population 0.018 −0.271 0.117 0.112 1

0.25 degree2

Factor one 1 0.045 −0.008 0.331 −0.028
Factor two 0.045 1 −0.137 −0.480 −0.368
Factor three −0.008 −0.137 1 0.521 0.121
Richness 0.331 −0.480 0.521 1 0.197
Population −0.028 −0.368 0.121 0.197 1
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Table S4. Cont.

Factor one Factor two Factor three Richness Population

0.5 degree2

Factor one 1 0.097 0.001 0.300 −0.044
Factor two 0.097 1 −0.149 −0.496 −0.406
Factor three 0.001 −0.149 1 0.513 0.095
Richness 0.300 −0.496 0.513 1 0.264
Population −0.044 −0.406 0.095 0.264 1

1 degree2

Factor one 1 0.189 0.047 0.259 −0.091
Factor two 0.189 1 −0.172 −0.477 −0.390
Factor three 0.047 −0.172 1 0.502 0.035
Richness 0.259 −0.477 0.502 1 0.309
Population −0.091 −0.390 0.035 0.309 1

2 degrees2

Factor one 1 0.260 0.100 0.226 −0.124
Factor two 0.260 1 −0.166 −0.430 −0.349
Factor three 0.100 −0.166 1 0.544 −0.055
Richness 0.226 −0.430 0.544 1 0.317
Population −0.124 −0.349 −0.055 0.317 1

4 degrees2

Factor one 1 0.362 0.223 0.227 −0.189
Factor two 0.362 1 −0.184 −0.161 −0.368
Factor three 0.223 −0.185 1 0.513 −0.157
Richness 0.227 −0.161 0.513 1 0.293
Population −0.190 −0.368 −0.157 0.293 1

Lyme disease
0.0625 degree2

Factor one 1 0.047 −0.006 −0.107 0.023
Factor two 0.047 1 −0.115 0.455 −0.206
Factor three −0.006 −0.115 1 −0.641 0.109
Richness −0.107 0.455 −0.641 1 −0.065
Population 0.023 −0.206 0.109 −0.065 1

0.125 degree2

Factor one 1 0.040 −0.004 −0.110 0.015
Factor two 0.040 1 −0.125 0.463 −0.265
Factor three −0.004 −0.125 1 −0.648 0.115
Richness −0.110 0.463 −0.648 1 −0.075
Population 0.015 −0.265 0.115 −0.075 1

0.25 degree2

Factor one 1 0.045 −0.008 −0.102 −0.028
Factor two 0.045 1 −0.137 0.472 −0.368
Factor three −0.008 −0.137 1 −0.657 0.121
Richness −0.102 0.472 −0.657 1 −0.116
Population −0.028 −0.368 0.121 −0.116 1

0.5 degree2

Factor one 1 0.097 0.001 −0.083 −0.044
Factor two 0.097 1 −0.149 0.492 −0.406
Factor three 0.001 −0.149 1 −0.664 0.095
Richness −0.083 0.492 −0.664 1 −0.103
Population −0.044 −0.406 0.095 −0.103 1

1 degree2

Factor one 1 0.189 0.047 −0.081 −0.091
Factor two 0.189 1 −0.172 0.523 −0.390
Factor three 0.047 −0.172 1 −0.628 0.035
Richness −0.081 0.523 −0.628 1 −0.024
Population −0.091 −0.390 0.035 −0.024 1

2 degrees2

Factor one 1 0.260 0.100 −0.104 −0.124
Factor two 0.260 1 −0.166 0.546 −0.349
Factor three 0.100 −0.166 1 −0.518 −0.055
Richness −0.104 0.546 −0.518 1 0.178
Population −0.124 −0.349 −0.055 0.178 1
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Table S4. Cont.

Factor one Factor two Factor three Richness Population

4 degrees2

Factor one 1 0.362 0.223 −0.169 −0.189
Factor two 0.362 1 −0.184 0.435 −0.368
Factor three 0.223 −0.184 1 −0.446 −0.157
Richness −0.169 0.435 −0.446 1 0.400
Population −0.189 −0.368 −0.157 0.400 1

Table S5. RMSE of each model output for every other scale in our analyses and RMSE
standardized to the range of values in the response variables

Scale

RMSE Standardized RMSE

Bd WNV Lyme disease Bd WNV Lyme disease

0.0625 degree2 0.4215 0.0746 0.0517 0.268 0.037 0.0005
0.25 degree2 0.4226 0.0744 0.0740 0.269 0.037 0.0007
1 degree2 0.4237 0.0745 0.0716 0.270 0.037 0.0007
4 degrees2 0.4260 0.0743 0.0718 0.271 0.037 0.0007

The RMSE represents the mean deviation between the observed and predicted values of the statistical model;
thus smaller values indicate better overall fit of the model to the data. There were no scale-dependent patterns of
RMSE across disease systems. RMSE units for Bd, arcsine-transformed prevalence and for WNV and Lyme disease are
cases per 10,000 people. Standardized RMSE values are unitless proportions.
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Table S6. Complete list of models used in model averaging with their ΔAkaike scores

Scale in degrees2

0.0625 0.125 0.25 0.5 1 2 4

Chytrid
Intrc,Factor3,Factor2,Rich 0 0.87 3.85 5.68 12.1 9.46 13.59
Intrc,Factor1,Factor3,Rich 1.29 1.09 0.75 6.96 10.97 7.91 12.78
Intrc,Factor2,Rich 1.71 1.82 6.91 8.31 17.94 23.95 31.29
Intrc,Rich 1.86 3.55 7.51 12.31 24.6 24.56 31.23
Intrc,Factor1,Rich 1.99 1.36 3.98 8.93 17.81 23.95 31.94
Intrc,Factor1,Factor2,Rich 2.09 0 3.47 4.61 10.78 22.05 30.51
Intrc,Factor3,Rich 2.26 4.62 6.76 12.25 20.85 10.39 12.82
Intrc,Factor3,Rich,Pop 3.08 6.24 8.42 13.66 21.92 1.81 2.87
Intrc,Factor1,Rich,Pop 3.12 2.93 5.9 10.83 17.2 2.47 3.5
Intrc,Factor2,Rich,Pop 3.47 3.81 8.88 10.3 16.51 2.72 3.52
Intrc,Rich,Pop 3.52 5.52 9.5 14.32 22.33 2.29 1.96
Intrc,Factor1,Factor3,Factor2 11.71 3.64 0 0 0 4.53 11.42
Intrc,Factor1,Factor3,Pop 27.84 20.89 14.14 20.61 17.11 0 2.11
Intrc,Factor1,Factor3 28.86 20.47 13.53 19.5 15.72 12.12 16.18
Intrc,Factor1,Factor2 31.73 18.98 18.38 14.16 14.49 27.45 35.13
Intrc,Factor1,Factor2,Pop 33.66 20.74 19.32 15.13 11.51 0.12 2.78
Intrc,Factor3,Factor2, 37.55 31.11 30.26 26.65 26.42 23.65 21.73
Intrc,Factor3,Factor2,Pop 39.5 32.8 31.32 27.83 23.24 2.8 2.44
Intrc,Factor1, 42.66 31.14 28.42 31.15 31.09 39.19 48.39
Intrc,Factor1,Pop 44.61 32.65 28.71 30.44 22.72 1.47 1.49
Intrc,Factor2,Pop 57.27 44.39 42.3 34.19 25.98 3.21 1.5
Intrc,Factor2 61.88 50.31 52.73 44.32 44.19 53.5 54.56
Intrc,Factor3,Pop 79.97 69.89 60.91 60.48 43.01 4.99 1.08
Intrc,Factor3 81.48 74.28 67.27 70.35 61.37 37.55 27.21
Intrc,Pop 86.52 72.53 64.22 60.19 42.57 4.8 0
Intrc 96.24 86.48 84.67 85.13 81.88 75.05 71.38

WNV
Intrc,Factor1,Factor2,Rich 0 0 0.73 4.58 5.18 8.23 7.89
Intrc,Factor2,Rich 0.72 0.78 1.11 7.17 10.42 13.49 10.79
Intrc,Factor2,Pop,Rich 2.22 2.61 0.58 5.93 8.25 7.11 4.46
Intrc,Factor3,Factor2,Rich 2.68 2.33 2.25 7.93 11.53 14.47 6.74
Intrc,Factor1,Rich 4.12 5.21 8 8.41 5.19 7.95 7.36
Intrc,Factor1,Factor3,Factor2 4.45 1.7 0.49 1.76 3.39 6.71 3.24
Intrc,Factor1,Factor3,Rich 4.88 4.64 6.16 6.08 4.56 7.86 5.67
Intrc,Factor1,Factor3 5.06 3.34 4.16 4.79 4.1 6.87 3.74
Intrc,Rich 5.22 6.44 9.23 12.54 12.6 15.87 12.26
Intrc,Factor1,Pop,Rich 6 6.44 4.91 4.74 2.11 1.44 0.43
Intrc,Factor3,Rich 6.83 7.22 9.17 12.39 13.35 16.5 9.58
Intrc,Factor1,Factor2 6.92 5.08 4.4 3.98 3.19 6.28 6.6
Intrc,Factor1,Factor3,Pop 7.04 4.11 0 0 0 0.57 0
Intrc,Pop,Rich 7.05 7.76 6.02 8.45 8.45 7.45 3.3
Intrc,Factor1 7.45 6.54 7.57 6.42 3.47 6.04 5.81
Intrc,Factor1,Factor2,Pop 8.34 6.97 4.41 3.33 1.57 1.74 3.6
Intrc,Factor3,Pop,Rich 8.73 8.24 5.04 7.82 9.28 9.02 3.65
Intrc,Factor1,Pop 9.17 8.08 5.56 3.28 0.13 0 1.7
Intrc,Factor3 12.02 9.38 8.92 10.57 11.34 14.49 7.59
Intrc,Factor3,Factor2 12.31 8.84 6.48 8.19 10.12 12.9 4.75
Intrc 13.78 11.98 11.84 11.93 10.9 14.35 12.17
Intrc,Factor3,Pop 13.85 10.59 5.54 6.71 7.75 8.33 3.68
Intrc,Factor3,Factor2,Pop 13.95 10.47 5.21 6.88 8.59 9.02 3.44
Intrc,Factor2 14.12 11.57 9.81 10.1 10.19 13.38 11.14
Intrc,Pop 15.23 13.75 10.42 9.6 8.15 8.59 7.83
Intrc,Factor2,Pop 15.25 13.53 10.02 9.87 9.22 9.62 8.79

Lyme disease
Intrc,Factor1,Rich,Pop 0 0 1.27 4.36 1.58 7.09 5.01
Intrc,Factor2,Rich,Pop 1.68 2.95 2.88 5.47 1.25 2 6.84
Intrc,Factor2,Rich 4.39 10.21 15.47 8.47 1.25 5.72 5.06
Intrc,Factor1,Rich 4.43 10.03 15.95 7.51 0.97 7.42 5.34
Intrc,Factor1,Factor2,Rich 5.24 11.58 17.43 9.45 2.94 5.09 0.89
Intrc,Factor3,Rich,Pop 5.69 2.68 0.42 1.78 3.12 16.38 11.09
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Table S6. Cont.

Scale in degrees2

0.0625 0.125 0.25 0.5 1 2 4

Intrc,Factor1,Factor3,Rich 6.06 11.2 17.28 9.28 2.98 9.35 7.17
Intrc,Factor3,Factor2,Rich 6.23 11.91 17.48 9.31 3.08 7.38 7.01
Intrc,Factor1,Pop 6.69 3.63 0.3 2.35 1.21 7.34 3.91
Intrc,Rich,Pop 7.76 6.77 1.68 3.51 1.23 14.54 9.08
Intrc,Factor1,Factor2,Pop 8.13 5.59 1.61 2.86 1.99 0.01 1.43
Intrc,Factor2,Pop 8.21 6 1.83 3.45 0 0 4.93
Intrc,Factor1,Factor3,Pop 8.41 5.65 1.69 1.99 2.19 7.26 5.64
Intrc,Factor3,Factor2,Pop 9.91 6.25 1.8 1.97 1.88 2.01 6.94
Intrc,Factor2 10.95 12.98 14.19 6.47 0.09 3.94 3.5
Intrc,Factor1 11.29 13.46 14.96 5.5 0.37 8.29 3.65
Intrc,Factor1,Factor2 11.74 14.62 16.19 7.45 1.96 3.32 0
Intrc,Factor1,Factor3 11.94 14.07 16.01 7.31 2.08 9.34 5.25
Intrc,Factor3,Rich 12.29 16.31 18.69 7.99 1.88 15.75 12.14
Intrc,Rich 12.54 16.88 17.02 7.63 0.19 14.36 10.41
Intrc,Factor3,Factor2 12.96 14.89 16.21 7.34 2.1 5.77 5.51
Intrc,Factor1,Factor3,Factor2 13.02 15.9 18.02 9.31 3.91 5.31 1.98
Intrc,Factor3,Pop 15.11 7.33 0 0 3.32 20.59 11.04
Intrc,Pop 15.8 10.44 0.89 1.5 1.34 18.82 9.91
Intrc 20.84 20.36 16.23 5.65 0.04 19.46 10.02
Intrc,Factor3 21.59 20.35 17.99 6.21 2.05 21.46 10.9

Intrc, intercept; Pop, population; Rich, richness.
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Table S7. Model averaged outputs without shrinkage

Chytrid WNV Lyme disease

Estimate SE Estimate SE Estimate SE

0.0625 degrees2

(Intercept) 0.59897 0.02518 0.005954 0.000587 2.8476 1.1431
Factor three 0.03774 0.02279 0.000657 0.000807 0.114 0.3664
Factor two −0.04428 0.02681 0.001331 0.000552 0.6954 0.2958
Richness −0.16387 0.0277 0.002047 0.000693 0.8609 0.2913
Factor one −0.03221 0.02191 0.001248 0.00071 −1.2954 0.4731
Population 0.01565 0.01989 0.000255 0.000415 −0.2416 0.1004

0.125 degrees2

(Intercept) 0.6029 0.02816 0.00603 0.000585 8.5334 11.4639
Factor one −0.04791 0.02453 0.001408 0.000714 −1.5729 0.5968
Factor two −0.05407 0.02874 0.001358 0.000567 0.5381 0.4643
Richness −0.13988 0.02965 0.001848 0.000725 0.7923 0.3325
Factor three 0.03941 0.02697 0.001111 0.000746 0.4725 0.3667
Population 0.00887 0.02014 −0.0003 0.000471 −0.4144 0.1239

0.25 degrees2

(Intercept) 0.58405 0.027387 0.006149 0.000588 6.8836 9.4349
Factor one −0.078 0.028254 0.001498 0.000673 −0.9976 0.893
Factor three 0.071878 0.029836 0.00143 0.000697 0.4409 0.3048
Factor two −0.07785 0.030451 0.001499 0.000605 0.0068 0.5432
Richness −0.11828 0.031421 0.001837 0.000768 0.3715 0.3301
Population 0.005455 0.022396 −0.0011 0.000562 −0.6482 0.16

0.5 degrees2

(Intercept) 0.600056 0.025625 0.006153 0.000586 6.5718 8.9133
Factor one −0.08917 0.022474 0.001764 0.000618 −0.659 1.0358
Factor three 0.079372 0.022955 0.001346 0.000621 0.512 0.3009
Factor two −0.09939 0.026935 0.001126 0.000589 −0.1445 0.4895
Richness −0.11178 0.031444 0.000718 0.000946 0.0738 0.3142
Population 0.002044 0.02523 −0.00144 0.000626 −0.5856 0.2293

1 degree2

(Intercept) 0.59527 0.02388 0.006207 0.000587 6.25332 8.10282
Factor one −0.09717 0.0184 0.001963 0.000632 0.72918 0.79049
Factor three 0.0906 0.02237 0.000948 0.00066 0.03594 0.35137
Factor two −0.09491 0.02261 0.000693 0.000637 −0.4161 0.3645
Richness −0.07604 0.02968 −3.4E-05 0.000818 −0.36364 0.30804
Population −0.05145 0.02576 −0.00154 0.000669 −0.35687 0.30119

2 degrees2

(Intercept) 0.60158 0.02548 0.00664 0.000632 4.46738 6.55022
Factor one −0.05069 0.02347 0.002003 0.000641 1.30635 0.88405
Factor three 0.05807 0.03519 0.000889 0.000731 0.03606 0.36851
Population −0.13511 0.03268 −0.00219 0.000775 −0.95509 0.40791
Factor two −0.0447 0.02547 0.000507 0.000727 −1.47287 0.44334
Richness −0.04954 0.03013 0.00052 0.000771 −0.07892 0.42442

4 degrees2

(Intercept) 0.58735 0.021208 0.006747 0.000743 5.80359 7.65677
Population −0.17725 0.033129 −0.00254 0.001047 0.50565 0.55191
Factor three 0.038727 0.037242 0.001974 0.000997 0.02379 0.48549
Factor one −0.01927 0.023562 0.00161 0.000684 1.73403 0.71411
Factor two −0.02039 0.026687 0.000997 0.00089 −1.08988 0.47805
Richness −0.00594 0.030468 0.001458 0.000984 0.30624 0.56466

We caution that parameter estimates with shrinkage are most appropriate. In multiple regression analyses,
estimates with shrinkage are preferable because they reduce model selection bias. Please see SI Results for
additional details.
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